m |
|
(5 intermediate revisions not shown.) |
Line 1: |
Line 1: |
- | {{STRUCTURE_3jv4| PDB=3jv4 | SCENE= }} | |
- | ===Crystal structure of the dimerization domains p50 and RelB=== | |
- | {{ABSTRACT_PUBMED_23485337}} | |
| | | |
- | ==Function== | + | ==Crystal structure of the dimerization domains p50 and RelB== |
- | [[http://www.uniprot.org/uniprot/RELB_MOUSE RELB_MOUSE]] NF-kappa-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric RelB-p50 and RelB-p52 complexes are transcriptional activators. RELB neither associates with DNA nor with RELA/p65 or REL. Stimulates promoter activity in the presence of NFKB2/p49 (By similarity). As a member of the NUPR1/RELB/IER3 survival pathway, may allow the development of pancreatic intraepithelial neoplasias.<ref>PMID:22565310</ref> [[http://www.uniprot.org/uniprot/NFKB1_MOUSE NFKB1_MOUSE]] NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric p65-p50 and RelB-p50 complexes are transcriptional activators. The NF-kappa-B p50-p50 homodimer is a transcriptional repressor, but can act as a transcriptional activator when associated with BCL3. NFKB1 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p105 and generation of p50 by a cotranslational processing. The proteasome-mediated process ensures the production of both p50 and p105 and preserves their independent function, although processing of NFKB1/p105 also appears to occur post-translationally. p50 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. Plays a role in the regulation of apoptosis. Isoform 5, isoform 6 and isoform 7 act as inhibitors of transactivation of p50 NF-kappa-B subunit, probably by sequestering it in the cytoplasm. Isoform 3 (p98) (but not p84 or p105) acts as a transactivator of NF-kappa-B-regulated gene expression. In a complex with MAP3K8, NFKB1/p105 represses MAP3K8-induced MAPK signaling; active MAP3K8 is released by proteasome-dependent degradation of NFKB1/p105. | + | <StructureSection load='3jv4' size='340' side='right'caption='[[3jv4]], [[Resolution|resolution]] 3.15Å' scene=''> |
| + | == Structural highlights == |
| + | <table><tr><td colspan='2'>[[3jv4]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JV4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3JV4 FirstGlance]. <br> |
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.15Å</td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3jv4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3jv4 OCA], [https://pdbe.org/3jv4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3jv4 RCSB], [https://www.ebi.ac.uk/pdbsum/3jv4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3jv4 ProSAT]</span></td></tr> |
| + | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/RELB_MOUSE RELB_MOUSE] NF-kappa-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric RelB-p50 and RelB-p52 complexes are transcriptional activators. RELB neither associates with DNA nor with RELA/p65 or REL. Stimulates promoter activity in the presence of NFKB2/p49 (By similarity). As a member of the NUPR1/RELB/IER3 survival pathway, may allow the development of pancreatic intraepithelial neoplasias.<ref>PMID:22565310</ref> |
| | | |
- | ==About this Structure== | + | ==See Also== |
- | [[3jv4]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JV4 OCA]. | + | *[[NF-kB|NF-kB]] |
- | | + | == References == |
- | ==Reference== | + | <references/> |
- | <references group="xtra"/><references/> | + | __TOC__ |
| + | </StructureSection> |
| + | [[Category: Large Structures]] |
| [[Category: Mus musculus]] | | [[Category: Mus musculus]] |
- | [[Category: Ghosh, G.]] | + | [[Category: Ghosh G]] |
- | [[Category: Huang, D B.]] | + | [[Category: Huang DB]] |
- | [[Category: Vu, D.]] | + | [[Category: Vu D]] |
- | [[Category: Activator]]
| + | |
- | [[Category: Ank repeat]]
| + | |
- | [[Category: Apoptosis]]
| + | |
- | [[Category: Dna-binding]]
| + | |
- | [[Category: Heterodimer]]
| + | |
- | [[Category: Nf-kb protein]]
| + | |
- | [[Category: Nucleus]]
| + | |
- | [[Category: Phosphoprotein]]
| + | |
- | [[Category: Relb and p50]]
| + | |
- | [[Category: S-nitrosylation]]
| + | |
- | [[Category: Transcription]]
| + | |
- | [[Category: Transcription regulation]]
| + | |
| Structural highlights
Function
RELB_MOUSE NF-kappa-B is a pleiotropic transcription factor which is present in almost all cell types and is involved in many biological processed such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. NF-kappa-B heterodimeric RelB-p50 and RelB-p52 complexes are transcriptional activators. RELB neither associates with DNA nor with RELA/p65 or REL. Stimulates promoter activity in the presence of NFKB2/p49 (By similarity). As a member of the NUPR1/RELB/IER3 survival pathway, may allow the development of pancreatic intraepithelial neoplasias.[1]
See Also
References
- ↑ Hamidi T, Algul H, Cano CE, Sandi MJ, Molejon MI, Riemann M, Calvo EL, Lomberk G, Dagorn JC, Weih F, Urrutia R, Schmid RM, Iovanna JL. Nuclear protein 1 promotes pancreatic cancer development and protects cells from stress by inhibiting apoptosis. J Clin Invest. 2012 Jun 1;122(6):2092-103. doi: 10.1172/JCI60144. Epub 2012 May, 8. PMID:22565310 doi:10.1172/JCI60144
|