3jwn
From Proteopedia
(Difference between revisions)
m (Protected "3jwn" [edit=sysop:move=sysop]) |
|||
| (5 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{STRUCTURE_3jwn| PDB=3jwn | SCENE= }} | ||
| - | ===Complex of FimC, FimF, FimG and FimH=== | ||
| - | {{ABSTRACT_PUBMED_20478255}} | ||
| - | == | + | ==Complex of FimC, FimF, FimG and FimH== |
| - | [[ | + | <StructureSection load='3jwn' size='340' side='right'caption='[[3jwn]], [[Resolution|resolution]] 2.69Å' scene=''> |
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[3jwn]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_F18+ Escherichia coli F18+] and [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JWN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3JWN FirstGlance]. <br> | ||
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.69Å</td></tr> | ||
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3jwn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3jwn OCA], [https://pdbe.org/3jwn PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3jwn RCSB], [https://www.ebi.ac.uk/pdbsum/3jwn PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3jwn ProSAT]</span></td></tr> | ||
| + | </table> | ||
| + | == Function == | ||
| + | [https://www.uniprot.org/uniprot/FIMG_ECOLI FIMG_ECOLI] Involved in regulation of length and mediation of adhesion of type 1 fimbriae (but not necessary for the production of fimbriae). Involved in the integration of FimH in the fimbriae. | ||
| + | == Evolutionary Conservation == | ||
| + | [[Image:Consurf_key_small.gif|200px|right]] | ||
| + | Check<jmol> | ||
| + | <jmolCheckbox> | ||
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/jw/3jwn_consurf.spt"</scriptWhenChecked> | ||
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
| + | <text>to colour the structure by Evolutionary Conservation</text> | ||
| + | </jmolCheckbox> | ||
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3jwn ConSurf]. | ||
| + | <div style="clear:both"></div> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | The Escherichia coli fimbrial adhesive protein, FimH, mediates shear-dependent binding to mannosylated surfaces via force-enhanced allosteric catch bonds, but the underlying structural mechanism was previously unknown. Here we present the crystal structure of FimH incorporated into the multiprotein fimbrial tip, where the anchoring (pilin) domain of FimH interacts with the mannose-binding (lectin) domain and causes a twist in the beta sandwich fold of the latter. This loosens the mannose-binding pocket on the opposite end of the lectin domain, resulting in an inactive low-affinity state of the adhesin. The autoinhibition effect of the pilin domain is removed by application of tensile force across the bond, which separates the domains and causes the lectin domain to untwist and clamp tightly around the ligand like a finger-trap toy. Thus, beta sandwich domains, which are common in multidomain proteins exposed to tensile force in vivo, can undergo drastic allosteric changes and be subjected to mechanical regulation. | ||
| - | + | Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like beta sheet twisting.,Le Trong I, Aprikian P, Kidd BA, Forero-Shelton M, Tchesnokova V, Rajagopal P, Rodriguez V, Interlandi G, Klevit R, Vogel V, Stenkamp RE, Sokurenko EV, Thomas WE Cell. 2010 May 14;141(4):645-55. PMID:20478255<ref>PMID:20478255</ref> | |
| - | + | ||
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | < | + | </div> |
| - | [[Category: Escherichia coli]] | + | <div class="pdbe-citations 3jwn" style="background-color:#fffaf0;"></div> |
| - | [[Category: | + | == References == |
| - | [[Category: | + | <references/> |
| - | [[Category: | + | __TOC__ |
| - | [[Category: Trong | + | </StructureSection> |
| - | [[Category: | + | [[Category: Escherichia coli F18+]] |
| - | [[Category: | + | [[Category: Escherichia coli K-12]] |
| - | + | [[Category: Large Structures]] | |
| - | + | [[Category: Aprikian P]] | |
| - | + | [[Category: Le Trong I]] | |
| - | + | [[Category: Sokurenko EV]] | |
| - | + | [[Category: Stenkamp RE]] | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
Current revision
Complex of FimC, FimF, FimG and FimH
| |||||||||||

