4k0v

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
(New page: '''Unreleased structure''' The entry 4k0v is ON HOLD Authors: Xuehong Yu, Tom C. M. Seegar, Annamarie C. Dalton, Dorothea Tzvetkova-Robev, Yehuda Goldgur, Dimitar B. Nikolov, William A....)
Current revision (15:52, 20 September 2023) (edit) (undo)
 
(6 intermediate revisions not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 4k0v is ON HOLD
+
==Structural basis for angiopoietin-1 mediated signaling initiation==
 +
<StructureSection load='4k0v' size='340' side='right'caption='[[4k0v]], [[Resolution|resolution]] 4.51&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[4k0v]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4K0V OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4K0V FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 4.51&#8491;</td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4k0v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4k0v OCA], [https://pdbe.org/4k0v PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4k0v RCSB], [https://www.ebi.ac.uk/pdbsum/4k0v PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4k0v ProSAT]</span></td></tr>
 +
</table>
 +
== Disease ==
 +
[https://www.uniprot.org/uniprot/TIE2_HUMAN TIE2_HUMAN] Defects in TEK are a cause of dominantly inherited venous malformations (VMCM) [MIM:[https://omim.org/entry/600195 600195]; an error of vascular morphogenesis characterized by dilated, serpiginous channels.<ref>PMID:18366015</ref> <ref>PMID:20651738</ref> <ref>PMID:8980225</ref> <ref>PMID:10369874</ref> <ref>PMID:19888299</ref> Note=May play a role in a range of diseases with a vascular component, including neovascularization of tumors, psoriasis and inflammation.<ref>PMID:18366015</ref> <ref>PMID:20651738</ref>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/TIE2_HUMAN TIE2_HUMAN] Tyrosine-protein kinase that acts as cell-surface receptor for ANGPT1, ANGPT2 and ANGPT4 and regulates angiogenesis, endothelial cell survival, proliferation, migration, adhesion and cell spreading, reorganization of the actin cytoskeleton, but also maintenance of vascular quiescence. Has anti-inflammatory effects by preventing the leakage of proinflammatory plasma proteins and leukocytes from blood vessels. Required for normal angiogenesis and heart development during embryogenesis. Required for post-natal hematopoiesis. After birth, activates or inhibits angiogenesis, depending on the context. Inhibits angiogenesis and promotes vascular stability in quiescent vessels, where endothelial cells have tight contacts. In quiescent vessels, ANGPT1 oligomers recruit TEK to cell-cell contacts, forming complexes with TEK molecules from adjoining cells, and this leads to preferential activation of phosphatidylinositol 3-kinase and the AKT1 signaling cascades. In migrating endothelial cells that lack cell-cell adhesions, ANGT1 recruits TEK to contacts with the extracellular matrix, leading to the formation of focal adhesion complexes, activation of PTK2/FAK and of the downstream kinases MAPK1/ERK2 and MAPK3/ERK1, and ultimately to the stimulation of sprouting angiogenesis. ANGPT1 signaling triggers receptor dimerization and autophosphorylation at specific tyrosine residues that then serve as binding sites for scaffold proteins and effectors. Signaling is modulated by ANGPT2 that has lower affinity for TEK, can promote TEK autophosphorylation in the absence of ANGPT1, but inhibits ANGPT1-mediated signaling by competing for the same binding site. Signaling is also modulated by formation of heterodimers with TIE1, and by proteolytic processing that gives rise to a soluble TEK extracellular domain. The soluble extracellular domain modulates signaling by functioning as decoy receptor for angiopoietins. TEK phosphorylates DOK2, GRB7, GRB14, PIK3R1; SHC1 and TIE1.<ref>PMID:9204896</ref> <ref>PMID:12816861</ref> <ref>PMID:15284220</ref> <ref>PMID:14665640</ref> <ref>PMID:15851516</ref> <ref>PMID:18425120</ref> <ref>PMID:18425119</ref> <ref>PMID:19223473</ref> <ref>PMID:18366015</ref> <ref>PMID:20651738</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Angiogenesis is a complex cellular process involving multiple regulatory growth factors and growth factor receptors. Among them, the ligands for the endothelial-specific tunica intima endothelial receptor tyrosine kinase 2 (Tie2) receptor kinase, angiopoietin-1 (Ang1) and Ang2, play essential roles in balancing vessel stability and regression during both developmental and tumor-induced angiogenesis. Despite possessing a high degree of sequence identity, Ang1 and Ang2 have distinct functional roles and cell-signaling characteristics. Here, we present the crystal structures of Ang1 both unbound and in complex with the Tie2 ectodomain. Comparison of the Ang1-containing structures with their Ang2-containing counterparts provide insight into the mechanism of receptor activation and reveal molecular surfaces important for interactions with Tie2 coreceptors and associated signaling proteins. Using structure-based mutagenesis, we identify a loop within the angiopoietin P domain, adjacent to the receptor-binding interface, which confers the specific agonist/antagonist properties of the molecule. We demonstrate using cell-based assays that an Ang2 chimera containing the Ang1 loop sequence behaves functionally similarly to Ang1 as a constitutive Tie2 agonist, able to efficiently dissociate the inhibitory Tie1/Tie2 complex and elicit Tie2 clustering and downstream signaling.
-
Authors: Xuehong Yu, Tom C. M. Seegar, Annamarie C. Dalton, Dorothea Tzvetkova-Robev, Yehuda Goldgur, Dimitar B. Nikolov, William A. Barton
+
Structural basis for angiopoietin-1-mediated signaling initiation.,Yu X, Seegar TC, Dalton AC, Tzvetkova-Robev D, Goldgur Y, Rajashankar KR, Nikolov DB, Barton WA Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7205-10. doi:, 10.1073/pnas.1216890110. Epub 2013 Apr 16. PMID:23592718<ref>PMID:23592718</ref>
-
Description: Structural basis for angiopoietin-1 mediated signaling initiation
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 4k0v" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Homo sapiens]]
 +
[[Category: Large Structures]]
 +
[[Category: Barton WA]]
 +
[[Category: Dalton AC]]
 +
[[Category: Goldgur Y]]
 +
[[Category: Nikolov DB]]
 +
[[Category: Seegar TCM]]
 +
[[Category: Tzvetkova-Robev D]]
 +
[[Category: Yu X]]

Current revision

Structural basis for angiopoietin-1 mediated signaling initiation

PDB ID 4k0v

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools