|
|
(4 intermediate revisions not shown.) |
Line 1: |
Line 1: |
- | {{STRUCTURE_3mhh| PDB=3mhh | SCENE= }} | |
- | ===Structure of the SAGA Ubp8/Sgf11/Sus1/Sgf73 DUB module=== | |
- | {{ABSTRACT_PUBMED_20395473}} | |
| | | |
- | ==Function== | + | ==Structure of the SAGA Ubp8/Sgf11/Sus1/Sgf73 DUB module== |
- | [[http://www.uniprot.org/uniprot/UBP8_YEAST UBP8_YEAST]] Functions as histone deubiquitinating component of the transcription regulatory histone acetylation (HAT) complexes SAGA and SLIK. SAGA is involved in RNA polymerase II-dependent transcriptional regulation of approximately 10% of yeast genes. At the promoters, SAGA is required for recruitment of the basal transcription machinery. It influences RNA polymerase II transcriptional activity through different activities such as TBP interaction (SPT3, SPT8 and SPT20) and promoter selectivity, interaction with transcription activators (GCN5, ADA2, ADA3 and TRA1), and chromatin modification through histone acetylation (GCN5) and deubiquitination (UBP8). SAGA acetylates nucleosomal histone H3 to some extent (to form H3K9ac, H3K14ac, H3K18ac and H3K23ac). SAGA interacts with DNA via upstream activating sequences (UASs). SLIK is proposed to have partly overlapping functions with SAGA. It preferentially acetylates methylated histone H3, at least after activation at the GAL1-10 locus. Together with SGF11, is required for histone H2B deubiquitination.<ref>PMID:10026213</ref> <ref>PMID:14660634</ref> <ref>PMID:15657441</ref> [[http://www.uniprot.org/uniprot/SUS1_YEAST SUS1_YEAST]] Involved in mRNA export coupled transcription activation by association with both the TREX-2 and the SAGA complexes. The transcription regulatory histone acetylation (HAT) complex SAGA is involved in RNA polymerase II-dependent regulation of approximately 10% of yeast genes. At the promoters, SAGA is required for recruitment of the basal transcription machinery. It influences RNA polymerase II transcriptional activity through different activities such as TBP interaction (SPT3, SPT8 and SPT20) and promoter selectivity, interaction with transcription activators (GCN5, ADA2, ADA3 and TRA1), and chromatin modification through histone acetylation (GCN5) and deubiquitination (UBP8). SUS1 forms a distinct functional SAGA module with UBP8, SGF11 and SGF73 required for deubiquitination of H2B and for the maintenance of steady-state H3 methylation levels. The TREX-2 complex functions in docking export-competent ribonucleoprotein particles (mRNPs) to the nuclear entrance of the nuclear pore complex (nuclear basket), by association with components of the nuclear mRNA export machinery (MEX67-MTR2 and SUB2) in the nucleoplasm and the nucleoporin NUP1 at the nuclear basket. TREX-2 participates in mRNA export and accurate chromatin positioning in the nucleus by tethering genes to the nuclear periphery. SUS1 has also a role in mRNP biogenesis and maintenance of genome integrity through preventing RNA-mediated genome instability. Finally SUS1 has a role in response to DNA damage induced by methyl methane sulfonate (MMS) and replication arrest induced by hydroxyurea.<ref>PMID:15311284</ref> <ref>PMID:16510898</ref> <ref>PMID:16855026</ref> <ref>PMID:16760982</ref> <ref>PMID:18923079</ref> <ref>PMID:18667528</ref> <ref>PMID:18003937</ref> | + | <StructureSection load='3mhh' size='340' side='right'caption='[[3mhh]], [[Resolution|resolution]] 2.45Å' scene=''> |
| + | == Structural highlights == |
| + | <table><tr><td colspan='2'>[[3mhh]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3MHH OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3MHH FirstGlance]. <br> |
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.45Å</td></tr> |
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3mhh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3mhh OCA], [https://pdbe.org/3mhh PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3mhh RCSB], [https://www.ebi.ac.uk/pdbsum/3mhh PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3mhh ProSAT]</span></td></tr> |
| + | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/UBP8_YEAST UBP8_YEAST] Functions as histone deubiquitinating component of the transcription regulatory histone acetylation (HAT) complexes SAGA and SLIK. SAGA is involved in RNA polymerase II-dependent transcriptional regulation of approximately 10% of yeast genes. At the promoters, SAGA is required for recruitment of the basal transcription machinery. It influences RNA polymerase II transcriptional activity through different activities such as TBP interaction (SPT3, SPT8 and SPT20) and promoter selectivity, interaction with transcription activators (GCN5, ADA2, ADA3 and TRA1), and chromatin modification through histone acetylation (GCN5) and deubiquitination (UBP8). SAGA acetylates nucleosomal histone H3 to some extent (to form H3K9ac, H3K14ac, H3K18ac and H3K23ac). SAGA interacts with DNA via upstream activating sequences (UASs). SLIK is proposed to have partly overlapping functions with SAGA. It preferentially acetylates methylated histone H3, at least after activation at the GAL1-10 locus. Together with SGF11, is required for histone H2B deubiquitination.<ref>PMID:10026213</ref> <ref>PMID:14660634</ref> <ref>PMID:15657441</ref> |
| + | == Evolutionary Conservation == |
| + | [[Image:Consurf_key_small.gif|200px|right]] |
| + | Check<jmol> |
| + | <jmolCheckbox> |
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/mh/3mhh_consurf.spt"</scriptWhenChecked> |
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| + | <text>to colour the structure by Evolutionary Conservation</text> |
| + | </jmolCheckbox> |
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3mhh ConSurf]. |
| + | <div style="clear:both"></div> |
| | | |
- | ==About this Structure== | + | ==See Also== |
- | [[3mhh]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3MHH OCA]. | + | *[[SAGA-associated factor|SAGA-associated factor]] |
- | | + | *[[Thioesterase 3D structures|Thioesterase 3D structures]] |
- | ==Reference== | + | == References == |
- | <ref group="xtra">PMID:020395473</ref><references group="xtra"/><references/>
| + | <references/> |
| + | __TOC__ |
| + | </StructureSection> |
| + | [[Category: Large Structures]] |
| [[Category: Saccharomyces cerevisiae]] | | [[Category: Saccharomyces cerevisiae]] |
- | [[Category: Ubiquitin thiolesterase]]
| + | [[Category: Berndsen CE]] |
- | [[Category: Berndsen, C E.]] | + | [[Category: Cohen RE]] |
- | [[Category: Cohen, R E.]] | + | [[Category: Datta AB]] |
- | [[Category: Datta, A B.]] | + | [[Category: Samara NL]] |
- | [[Category: Samara, N L.]] | + | [[Category: Wolberger C]] |
- | [[Category: Wolberger, C.]] | + | [[Category: Yao T]] |
- | [[Category: Yao, T.]] | + | [[Category: Zhang X]] |
- | [[Category: Zhang, X.]] | + | |
- | [[Category: Hydrolase-transcription complex]]
| + | |
- | [[Category: Multi-protein complex]]
| + | |
| Structural highlights
Function
UBP8_YEAST Functions as histone deubiquitinating component of the transcription regulatory histone acetylation (HAT) complexes SAGA and SLIK. SAGA is involved in RNA polymerase II-dependent transcriptional regulation of approximately 10% of yeast genes. At the promoters, SAGA is required for recruitment of the basal transcription machinery. It influences RNA polymerase II transcriptional activity through different activities such as TBP interaction (SPT3, SPT8 and SPT20) and promoter selectivity, interaction with transcription activators (GCN5, ADA2, ADA3 and TRA1), and chromatin modification through histone acetylation (GCN5) and deubiquitination (UBP8). SAGA acetylates nucleosomal histone H3 to some extent (to form H3K9ac, H3K14ac, H3K18ac and H3K23ac). SAGA interacts with DNA via upstream activating sequences (UASs). SLIK is proposed to have partly overlapping functions with SAGA. It preferentially acetylates methylated histone H3, at least after activation at the GAL1-10 locus. Together with SGF11, is required for histone H2B deubiquitination.[1] [2] [3]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
See Also
References
- ↑ Grant PA, Eberharter A, John S, Cook RG, Turner BM, Workman JL. Expanded lysine acetylation specificity of Gcn5 in native complexes. J Biol Chem. 1999 Feb 26;274(9):5895-900. PMID:10026213
- ↑ Daniel JA, Torok MS, Sun ZW, Schieltz D, Allis CD, Yates JR 3rd, Grant PA. Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J Biol Chem. 2004 Jan 16;279(3):1867-71. Epub 2003 Dec 3. PMID:14660634 doi:10.1074/jbc.C300494200
- ↑ Ingvarsdottir K, Krogan NJ, Emre NC, Wyce A, Thompson NJ, Emili A, Hughes TR, Greenblatt JF, Berger SL. H2B ubiquitin protease Ubp8 and Sgf11 constitute a discrete functional module within the Saccharomyces cerevisiae SAGA complex. Mol Cell Biol. 2005 Feb;25(3):1162-72. PMID:15657441 doi:25/3/1162
|