|  |   | 
		| (5 intermediate revisions not shown.) | 
| Line 1: | Line 1: | 
| - | {{STRUCTURE_3rt3|  PDB=3rt3  |  SCENE=  }}  |  | 
| - | ===Complex of influenza virus protein with host anti-viral factor=== |  | 
|  |  |  |  | 
| - | ==Function== | + | ==Complex of influenza virus protein with host anti-viral factor== | 
| - | [[http://www.uniprot.org/uniprot/ISG15_HUMAN ISG15_HUMAN]] Ubiquitin-like protein that is conjugated to intracellular target proteins after IFN-alpha or IFN-beta stimulation. Its enzymatic pathway is partially distinct from that of ubiquitin, differing in substrate specificity and interaction with ligating enzymes. ISG15 conjugation pathway uses a dedicated E1 enzyme, but seems to converge with the Ub conjugation pathway at the level of a specific E2 enzyme. Targets include STAT1, SERPINA3G/SPI2A, JAK1, MAPK3/ERK1, PLCG1, EIF2AK2/PKR, MX1/MxA, and RIG-1. Deconjugated by USP18/UBP43. Shows specific chemotactic activity towards neutrophils and activates them to induce release of eosinophil chemotactic factors. May serve as a trans-acting binding factor directing the association of ligated target proteins to intermediate filaments. May also be involved in autocrine, paracrine and endocrine mechanisms, as in cell-to-cell signaling, possibly partly by inducing IFN-gamma secretion by monocytes and macrophages. Seems to display antiviral activity during viral infections.<ref>PMID:1373138</ref> <ref>PMID:7526157</ref> <ref>PMID:8550581</ref> <ref>PMID:2005397</ref> <ref>PMID:16254333</ref> <ref>PMID:16009940</ref>   In response to IFN-tau secreted by the conceptus, may ligate to and regulate proteins involved in the release of prostaglandin F2-alpha (PGF), and thus prevent lysis of the corpus luteum and maintain the pregnancy (By similarity).<ref>PMID:1373138</ref> <ref>PMID:7526157</ref> <ref>PMID:8550581</ref> <ref>PMID:2005397</ref> <ref>PMID:16254333</ref> <ref>PMID:16009940</ref> [[http://www.uniprot.org/uniprot/NS1_INBLE NS1_INBLE]] Binds and inhibits the ubiquitin-like protein G1P2/ISG15, which is an early antiviral protein. Inhibits IRF-3 nuclear translocation and activation. Inhibits IFN-beta promoter activation; this inhibition is not dsRNA-binding dependent Prevents EIF2AK2/PKR activation, either by binding double strand RNA or by interacting directly with EIF2AK2/PKR. Also binds poly(A) and U6 snRNA. Suppresses the RNA silencing-based antiviral response in Drosophila cells.<ref>PMID:15479798</ref>   | + | <StructureSection load='3rt3' size='340' side='right'caption='[[3rt3]], [[Resolution|resolution]] 2.01Å' scene=''> | 
| - |   | + | == Structural highlights == | 
| - | ==About this Structure== | + | <table><tr><td colspan='2'>[[3rt3]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Influenza_B_virus_(B/Lee/1940) Influenza B virus (B/Lee/1940)]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3RT3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3RT3 FirstGlance]. <br> | 
| - | [[3rt3]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [http://en.wikipedia.org/wiki/Influenza_b_virus Influenza b virus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3RT3 OCA]. 
 | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.006Å</td></tr> | 
| - |   | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SIN:SUCCINIC+ACID'>SIN</scene></td></tr> | 
| - | ==Reference==
 | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3rt3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3rt3 OCA], [https://pdbe.org/3rt3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3rt3 RCSB], [https://www.ebi.ac.uk/pdbsum/3rt3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3rt3 ProSAT]</span></td></tr> | 
| - | <references group="xtra"/><references/> | + | </table> | 
|  | + | == Function == | 
|  | + | [https://www.uniprot.org/uniprot/ISG15_HUMAN ISG15_HUMAN] Ubiquitin-like protein that is conjugated to intracellular target proteins after IFN-alpha or IFN-beta stimulation. Its enzymatic pathway is partially distinct from that of ubiquitin, differing in substrate specificity and interaction with ligating enzymes. ISG15 conjugation pathway uses a dedicated E1 enzyme, but seems to converge with the Ub conjugation pathway at the level of a specific E2 enzyme. Targets include STAT1, SERPINA3G/SPI2A, JAK1, MAPK3/ERK1, PLCG1, EIF2AK2/PKR, MX1/MxA, and RIG-1. Deconjugated by USP18/UBP43. Shows specific chemotactic activity towards neutrophils and activates them to induce release of eosinophil chemotactic factors. May serve as a trans-acting binding factor directing the association of ligated target proteins to intermediate filaments. May also be involved in autocrine, paracrine and endocrine mechanisms, as in cell-to-cell signaling, possibly partly by inducing IFN-gamma secretion by monocytes and macrophages. Seems to display antiviral activity during viral infections.<ref>PMID:1373138</ref> <ref>PMID:7526157</ref> <ref>PMID:8550581</ref> <ref>PMID:2005397</ref> <ref>PMID:16254333</ref> <ref>PMID:16009940</ref>   In response to IFN-tau secreted by the conceptus, may ligate to and regulate proteins involved in the release of prostaglandin F2-alpha (PGF), and thus prevent lysis of the corpus luteum and maintain the pregnancy (By similarity).<ref>PMID:1373138</ref> <ref>PMID:7526157</ref> <ref>PMID:8550581</ref> <ref>PMID:2005397</ref> <ref>PMID:16254333</ref> <ref>PMID:16009940</ref>  | 
|  | + | == References == | 
|  | + | <references/> | 
|  | + | __TOC__ | 
|  | + | </StructureSection> | 
|  | [[Category: Homo sapiens]] |  | [[Category: Homo sapiens]] | 
| - | [[Category: Influenza b virus]] | + | [[Category: Large Structures]] | 
| - | [[Category: Li, L.]] | + | [[Category: Li L]] | 
| - | [[Category: Wang, X Q]] | + | [[Category: Wang XQ]] | 
| - | [[Category: Antiviral protein-viral protein complex]]
 | + |  | 
| - | [[Category: Isgylation]]
 | + |  | 
| - | [[Category: Ubiquitin-like domain]]
 | + |  | 
|  |   Structural highlights   Function ISG15_HUMAN Ubiquitin-like protein that is conjugated to intracellular target proteins after IFN-alpha or IFN-beta stimulation. Its enzymatic pathway is partially distinct from that of ubiquitin, differing in substrate specificity and interaction with ligating enzymes. ISG15 conjugation pathway uses a dedicated E1 enzyme, but seems to converge with the Ub conjugation pathway at the level of a specific E2 enzyme. Targets include STAT1, SERPINA3G/SPI2A, JAK1, MAPK3/ERK1, PLCG1, EIF2AK2/PKR, MX1/MxA, and RIG-1. Deconjugated by USP18/UBP43. Shows specific chemotactic activity towards neutrophils and activates them to induce release of eosinophil chemotactic factors. May serve as a trans-acting binding factor directing the association of ligated target proteins to intermediate filaments. May also be involved in autocrine, paracrine and endocrine mechanisms, as in cell-to-cell signaling, possibly partly by inducing IFN-gamma secretion by monocytes and macrophages. Seems to display antiviral activity during viral infections.[1] [2] [3] [4] [5] [6]   In response to IFN-tau secreted by the conceptus, may ligate to and regulate proteins involved in the release of prostaglandin F2-alpha (PGF), and thus prevent lysis of the corpus luteum and maintain the pregnancy (By similarity).[7] [8] [9] [10] [11] [12] 
   References ↑ Loeb KR, Haas AL. The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem. 1992 Apr 15;267(11):7806-13. PMID:1373138 ↑ Loeb KR, Haas AL. Conjugates of ubiquitin cross-reactive protein distribute in a cytoskeletal pattern. Mol Cell Biol. 1994 Dec;14(12):8408-19. PMID:7526157 ↑ Narasimhan J, Potter JL, Haas AL. Conjugation of the 15-kDa interferon-induced ubiquitin homolog is distinct from that of ubiquitin. J Biol Chem. 1996 Jan 5;271(1):324-30. PMID:8550581 ↑ Knight E Jr, Cordova B. IFN-induced 15-kDa protein is released from human lymphocytes and monocytes. J Immunol. 1991 Apr 1;146(7):2280-4. PMID:2005397 ↑ Lenschow DJ, Giannakopoulos NV, Gunn LJ, Johnston C, O'Guin AK, Schmidt RE, Levine B, Virgin HW 4th. Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J Virol. 2005 Nov;79(22):13974-83. PMID:16254333 doi:79/22/13974↑ Zhao C, Denison C, Huibregtse JM, Gygi S, Krug RM. Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10200-5. Epub 2005 Jul 11. PMID:16009940 doi:0504754102↑ Loeb KR, Haas AL. The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem. 1992 Apr 15;267(11):7806-13. PMID:1373138 ↑ Loeb KR, Haas AL. Conjugates of ubiquitin cross-reactive protein distribute in a cytoskeletal pattern. Mol Cell Biol. 1994 Dec;14(12):8408-19. PMID:7526157 ↑ Narasimhan J, Potter JL, Haas AL. Conjugation of the 15-kDa interferon-induced ubiquitin homolog is distinct from that of ubiquitin. J Biol Chem. 1996 Jan 5;271(1):324-30. PMID:8550581 ↑ Knight E Jr, Cordova B. IFN-induced 15-kDa protein is released from human lymphocytes and monocytes. J Immunol. 1991 Apr 1;146(7):2280-4. PMID:2005397 ↑ Lenschow DJ, Giannakopoulos NV, Gunn LJ, Johnston C, O'Guin AK, Schmidt RE, Levine B, Virgin HW 4th. Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J Virol. 2005 Nov;79(22):13974-83. PMID:16254333 doi:79/22/13974↑ Zhao C, Denison C, Huibregtse JM, Gygi S, Krug RM. Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10200-5. Epub 2005 Jul 11. PMID:16009940 doi:0504754102
 
 |