2hum

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (10:01, 30 August 2023) (edit) (undo)
 
(15 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:2hum.gif|left|200px]]<br /><applet load="2hum" size="350" color="white" frame="true" align="right" spinBox="true"
 
-
caption="2hum, resolution 2.35&Aring;" />
 
-
'''Crystal structure of T4 Lysozyme D72C synthetic dimer'''<br />
 
-
==About this Structure==
+
==Crystal structure of T4 Lysozyme D72C synthetic dimer==
-
2HUM is a [http://en.wikipedia.org/wiki/Single_protein Single protein] structure of sequence from [http://en.wikipedia.org/wiki/Bacteriophage_t4 Bacteriophage t4] with <scene name='pdbligand=TRS:'>TRS</scene> as [http://en.wikipedia.org/wiki/ligand ligand]. Active as [http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HUM OCA].
+
<StructureSection load='2hum' size='340' side='right'caption='[[2hum]], [[Resolution|resolution]] 2.35&Aring;' scene=''>
-
[[Category: Bacteriophage t4]]
+
== Structural highlights ==
-
[[Category: Lysozyme]]
+
<table><tr><td colspan='2'>[[2hum]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T4 Escherichia virus T4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HUM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2HUM FirstGlance]. <br>
-
[[Category: Single protein]]
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.35&#8491;</td></tr>
-
[[Category: Banatao, D R.]]
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene></td></tr>
-
[[Category: Cascio, D.]]
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2hum FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hum OCA], [https://pdbe.org/2hum PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2hum RCSB], [https://www.ebi.ac.uk/pdbsum/2hum PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2hum ProSAT]</span></td></tr>
-
[[Category: Yeates, T O.]]
+
</table>
-
[[Category: TRS]]
+
== Function ==
-
[[Category: t4 lysozyme synthetic dimer]]
+
[https://www.uniprot.org/uniprot/ENLYS_BPT4 ENLYS_BPT4] Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.<ref>PMID:22389108</ref>
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hu/2hum_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2hum ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Previous studies of symmetry preferences in protein crystals suggest that symmetric proteins, such as homodimers, might crystallize more readily on average than asymmetric, monomeric proteins. Proteins that are naturally monomeric can be made homodimeric artificially by forming disulfide bonds between individual cysteine residues introduced by mutagenesis. Furthermore, by creating a variety of single-cysteine mutants, a series of distinct synthetic dimers can be generated for a given protein of interest, with each expected to gain advantage from its added symmetry and to exhibit a crystallization behavior distinct from the other constructs. This strategy was tested on phage T4 lysozyme, a protein whose crystallization as a monomer has been studied exhaustively. Experiments on three single-cysteine mutants, each prepared in dimeric form, yielded numerous novel crystal forms that cannot be realized by monomeric lysozyme. Six new crystal forms have been characterized. The results suggest that synthetic symmetrization may be a useful approach for enlarging the search space for crystallizing proteins.
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 17:45:53 2008''
+
An approach to crystallizing proteins by synthetic symmetrization.,Banatao DR, Cascio D, Crowley CS, Fleissner MR, Tienson HL, Yeates TO Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16230-5. Epub 2006 Oct 18. PMID:17050682<ref>PMID:17050682</ref>
 +
 
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 2hum" style="background-color:#fffaf0;"></div>
 +
 
 +
==See Also==
 +
*[[Lysozyme 3D structures|Lysozyme 3D structures]]
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Escherichia virus T4]]
 +
[[Category: Large Structures]]
 +
[[Category: Banatao DR]]
 +
[[Category: Cascio D]]
 +
[[Category: Yeates TO]]

Current revision

Crystal structure of T4 Lysozyme D72C synthetic dimer

PDB ID 2hum

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools