4nbj
From Proteopedia
(Difference between revisions)
m (Protected "4nbj" [edit=sysop:move=sysop]) |
|||
(6 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==D-aminoacyl-tRNA deacylase (DTD) from Plasmodium falciparum in complex with D-tyrosyl-3'-aminoadenosine at 2.20 Angstrom resolution== | |
+ | <StructureSection load='4nbj' size='340' side='right'caption='[[4nbj]], [[Resolution|resolution]] 2.20Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[4nbj]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Plasmodium_falciparum_3D7 Plasmodium falciparum 3D7]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4NBJ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4NBJ FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=D3Y:3-DEOXY-3-(D-TYROSYLAMINO)ADENOSINE'>D3Y</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4nbj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4nbj OCA], [https://pdbe.org/4nbj PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4nbj RCSB], [https://www.ebi.ac.uk/pdbsum/4nbj PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4nbj ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/DTD_PLAF7 DTD_PLAF7] D-aminoacyl-tRNA deacylase, with no observable activity on tRNAs charged with their cognate L-amino acid (PubMed:20007323, PubMed:24302572, PubMed:27224426). Probably acts by rejecting L-amino acids from its binding site rather than specific recognition of D-amino acids (PubMed:27224426). Catalyzes the hydrolysis of D-tyrosyl-tRNA(Tyr), has no activity on correctly charged L-tyrosyl-tRNA(Tyr) (PubMed:20007323, PubMed:24302572, PubMed:27224426). Hydrolyzes correctly charged, achiral, glycyl-tRNA(Gly) (PubMed:27224426). Deacylates mischarged D.melanogaster and E.coli glycyl-tRNA(Ala) (PubMed:28362257). Probably acts via tRNA-based rather than protein-based catalysis (PubMed:24302572, PubMed:27224426). Acts on tRNAs only when the D-amino acid is either attached to the ribose 3'-OH or transferred to the 3'-OH from the 2'-OH through rapid transesterification (PubMed:24302572). Binds a number of other D-amino acids (D-Arg, D-Glu, D-His, D-Lys, D-Ser), suggesting it may also deacylate other mischarged tRNAs (PubMed:20007323).<ref>PMID:20007323</ref> <ref>PMID:24302572</ref> <ref>PMID:27224426</ref> <ref>PMID:28362257</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The biological macromolecular world is homochiral and effective enforcement and perpetuation of this homochirality is essential for cell survival. In this study, we present the mechanistic basis of a configuration-specific enzyme that selectively removes D-amino acids erroneously coupled to tRNAs. The crystal structure of dimeric D-aminoacyl-tRNA deacylase (DTD) from Plasmodium falciparum in complex with a substrate-mimicking analog shows how it uses an invariant 'cross-subunit' Gly-cisPro dipeptide to capture the chiral centre of incoming D-aminoacyl-tRNA. While no protein residues are directly involved in catalysis, the unique side chain-independent mode of substrate recognition provides a clear explanation for DTD's ability to act on multiple D-amino acids. The strict chiral specificity elegantly explains how the enriched cellular pool of L-aminoacyl-tRNAs escapes this proofreading step. The study thus provides insights into a fundamental enantioselection process and elucidates a chiral enforcement mechanism with a crucial role in preventing D-amino acid infiltration during the evolution of translational apparatus. DOI: http://dx.doi.org/10.7554/eLife.01519.001. | ||
- | + | Mechanism of chiral proofreading during translation of the genetic code.,Ahmad S, Routh SB, Kamarthapu V, Chalissery J, Muthukumar S, Hussain T, Kruparani SP, Deshmukh MV, Sankaranarayanan R Elife. 2013 Dec 3;2(0):e01519. doi: 10.7554/eLife.01519. PMID:24302572<ref>PMID:24302572</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
+ | </div> | ||
+ | <div class="pdbe-citations 4nbj" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Plasmodium falciparum 3D7]] | ||
+ | [[Category: Ahmad S]] | ||
+ | [[Category: Kamarthapu V]] | ||
+ | [[Category: Routh SB]] | ||
+ | [[Category: Sankaranarayanan R]] |
Current revision
D-aminoacyl-tRNA deacylase (DTD) from Plasmodium falciparum in complex with D-tyrosyl-3'-aminoadenosine at 2.20 Angstrom resolution
|