4nc2

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m (Protected "4nc2" [edit=sysop:move=sysop])
Current revision (06:44, 17 October 2024) (edit) (undo)
 
(8 intermediate revisions not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 4nc2 is ON HOLD
+
==Crystal structure of TcdB-B1 bound to B39 VHH==
 +
<StructureSection load='4nc2' size='340' side='right'caption='[[4nc2]], [[Resolution|resolution]] 2.50&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[4nc2]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Clostridioides_difficile Clostridioides difficile] and [https://en.wikipedia.org/wiki/Lama_glama Lama glama]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4NC2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4NC2 FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.5&#8491;</td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4nc2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4nc2 OCA], [https://pdbe.org/4nc2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4nc2 RCSB], [https://www.ebi.ac.uk/pdbsum/4nc2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4nc2 ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/TCDB_CLODI TCDB_CLODI] Precursor of a cytotoxin that targets and disrupts the colonic epithelium, inducing the host inflammatory and innate immune responses and resulting in diarrhea and pseudomembranous colitis (PubMed:20844489, PubMed:24919149). TcdB constitutes the main toxin that mediates the pathology of C.difficile infection, an opportunistic pathogen that colonizes the colon when the normal gut microbiome is disrupted (PubMed:19252482, PubMed:20844489). Compared to TcdA, TcdB is more virulent and more important for inducing the host inflammatory and innate immune responses (PubMed:19252482, PubMed:24919149). This form constitutes the precursor of the toxin: it enters into host cells and mediates autoprocessing to release the active toxin (Glucosyltransferase TcdB) into the host cytosol (PubMed:10768933, PubMed:11152463, PubMed:12941936, PubMed:17334356, PubMed:20498856). Targets colonic epithelia by binding to the frizzled receptors FZD1, FZD2 and FZD7, and enters host cells via clathrin-mediated endocytosis (PubMed:27680706). Frizzled receptors constitute the major host receptors in the colonic epithelium, but other receptors, such as CSPG4 or NECTIN3/PVRL3, have been identified (PubMed:25547119, PubMed:26038560, PubMed:27680706). Binding to carbohydrates and sulfated glycosaminoglycans on host cell surface also contribute to entry into cells (By similarity). Once entered into host cells, acidification in the endosome promotes the membrane insertion of the translocation region and formation of a pore, leading to translocation of the GT44 and peptidase C80 domains across the endosomal membrane (PubMed:11152463, PubMed:12941936, PubMed:24567384). This activates the peptidase C80 domain and autocatalytic processing, releasing the N-terminal part (Glucosyltransferase TcdB), which constitutes the active part of the toxin, in the cytosol (PubMed:17334356, PubMed:27571750).[UniProtKB:P16154]<ref>PMID:10768933</ref> <ref>PMID:11152463</ref> <ref>PMID:12941936</ref> <ref>PMID:17334356</ref> <ref>PMID:19252482</ref> <ref>PMID:20498856</ref> <ref>PMID:20844489</ref> <ref>PMID:24567384</ref> <ref>PMID:24919149</ref> <ref>PMID:25547119</ref> <ref>PMID:26038560</ref> <ref>PMID:27571750</ref> <ref>PMID:27680706</ref> Active form of the toxin, which is released into the host cytosol following autoprocessing and inactivates small GTPases (PubMed:16157585, PubMed:17901056, PubMed:24905543, PubMed:24919149, PubMed:7777059, PubMed:8144660). Acts by mediating monoglucosylation of small GTPases of the Rho family (Rac1, RhoA, RhoB, RhoC, RhoG and Cdc42) in host cells at the conserved threonine residue located in the switch I region ('Thr-37/35'), using UDP-alpha-D-glucose as the sugar donor (PubMed:16157585, PubMed:17901056, PubMed:24905543, PubMed:24919149, PubMed:7777059). Monoglucosylation of host small GTPases completely prevents the recognition of the downstream effector, blocking the GTPases in their inactive form, leading to actin cytoskeleton disruption and cell death, resulting in the loss of colonic epithelial barrier function (PubMed:24919149, PubMed:7777059).<ref>PMID:16157585</ref> <ref>PMID:17901056</ref> <ref>PMID:24905543</ref> <ref>PMID:24919149</ref> <ref>PMID:7777059</ref> <ref>PMID:8144660</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Clostridium difficile infection (CDI) is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function, and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents.
-
Authors: Murase, T., Eugenio, L., Schorr, M., Hussack, G., Tanha, J., Kitova, E.N., Klassen, J.S., Ng, K.K.S.
+
Structural Basis for Antibody Recognition in the Receptor-Binding Domains of Toxins A and B from Clostridium difficile.,Murase T, Eugenio L, Schorr M, Hussack G, Tanha J, Kitova EN, Klassen JS, Ng KK J Biol Chem. 2013 Dec 5. PMID:24311789<ref>PMID:24311789</ref>
-
Description: Crystal structure of TcdB-B1 bound to B39 VHH
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 4nc2" style="background-color:#fffaf0;"></div>
 +
 
 +
==See Also==
 +
*[[Antibody 3D structures|Antibody 3D structures]]
 +
*[[3D structures of non-human antibody|3D structures of non-human antibody]]
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Clostridioides difficile]]
 +
[[Category: Lama glama]]
 +
[[Category: Large Structures]]
 +
[[Category: Eugenio L]]
 +
[[Category: Hussack G]]
 +
[[Category: Kitova EN]]
 +
[[Category: Klassen JS]]
 +
[[Category: Murase T]]
 +
[[Category: Ng KKS]]
 +
[[Category: Schorr M]]
 +
[[Category: Tanha J]]

Current revision

Crystal structure of TcdB-B1 bound to B39 VHH

PDB ID 4nc2

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools