4liq
From Proteopedia
(Difference between revisions)
												
			
			| (5 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | '''Unreleased structure''' | ||
| - | + | ==Structure of the extracellular domain of human CSF-1 receptor in complex with the Fab fragment of RG7155== | |
| + | <StructureSection load='4liq' size='340' side='right'caption='[[4liq]], [[Resolution|resolution]] 2.60Å' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[4liq]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4LIQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4LIQ FirstGlance]. <br> | ||
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6Å</td></tr> | ||
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4liq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4liq OCA], [https://pdbe.org/4liq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4liq RCSB], [https://www.ebi.ac.uk/pdbsum/4liq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4liq ProSAT]</span></td></tr> | ||
| + | </table> | ||
| + | == Disease == | ||
| + | [https://www.uniprot.org/uniprot/CSF1R_HUMAN CSF1R_HUMAN] Note=Aberrant expression of CSF1 or CSF1R can promote cancer cell proliferation, invasion and formation of metastases. Overexpression of CSF1 or CSF1R is observed in a significant percentage of breast, ovarian, prostate, and endometrial cancers.<ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:16337366</ref>   Note=Aberrant expression of CSF1 or CSF1R may play a role in inflammatory diseases, such as rheumatoid arthritis, glomerulonephritis, atherosclerosis, and allograft rejection.<ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:16337366</ref>   Defects in CSF1R are the cause of leukoencephalopathy, diffuse hereditary, with spheroids (HDLS) [MIM:[https://omim.org/entry/221820 221820]. An autosomal dominant adult-onset rapidly progressive neurodegenerative disorder characterized by variable behavioral, cognitive, and motor changes. Patients often die of dementia within 6 years of onset. Brain imaging shows patchy abnormalities in the cerebral white matter, predominantly affecting the frontal and parietal lobes.<ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:16337366</ref> <ref>PMID:22197934</ref>  | ||
| + | == Function == | ||
| + | [https://www.uniprot.org/uniprot/CSF1R_HUMAN CSF1R_HUMAN] Tyrosine-protein kinase that acts as cell-surface receptor for CSF1 and IL34 and plays an essential role in the regulation of survival, proliferation and differentiation of hematopoietic precursor cells, especially mononuclear phagocytes, such as macrophages and monocytes. Promotes the release of proinflammatory chemokines in response to IL34 and CSF1, and thereby plays an important role in innate immunity and in inflammatory processes. Plays an important role in the regulation of osteoclast proliferation and differentiation, the regulation of bone resorption, and is required for normal bone and tooth development. Required for normal male and female fertility, and for normal development of milk ducts and acinar structures in the mammary gland during pregnancy. Promotes reorganization of the actin cytoskeleton, regulates formation of membrane ruffles, cell adhesion and cell migration, and promotes cancer cell invasion. Activates several signaling pathways in response to ligand binding. Phosphorylates PIK3R1, PLCG2, GRB2, SLA2 and CBL. Activation of PLCG2 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate, that then lead to the activation of protein kinase C family members, especially PRKCD. Phosphorylation of PIK3R1, the regulatory subunit of phosphatidylinositol 3-kinase, leads to activation of the AKT1 signaling pathway. Activated CSF1R also mediates activation of the MAP kinases MAPK1/ERK2 and/or MAPK3/ERK1, and of the SRC family kinases SRC, FYN and YES1. Activated CSF1R transmits signals both via proteins that directly interact with phosphorylated tyrosine residues in its intracellular domain, or via adapter proteins, such as GRB2. Promotes activation of STAT family members STAT3, STAT5A and/or STAT5B. Promotes tyrosine phosphorylation of SHC1 and INPP5D/SHIP-1. Receptor signaling is down-regulated by protein phosphatases, such as INPP5D/SHIP-1, that dephosphorylate the receptor and its downstream effectors, and by rapid internalization of the activated receptor.<ref>PMID:7683918</ref> <ref>PMID:12882960</ref> <ref>PMID:15117969</ref> <ref>PMID:16648572</ref> <ref>PMID:17121910</ref> <ref>PMID:16170366</ref> <ref>PMID:18467591</ref> <ref>PMID:18814279</ref> <ref>PMID:19934330</ref> <ref>PMID:20489731</ref> <ref>PMID:20829061</ref> <ref>PMID:20504948</ref> <ref>PMID:16337366</ref> <ref>PMID:19193011</ref>  | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Macrophage infiltration has been identified as an independent poor prognostic factor in several cancer types. The major survival factor for these macrophages is macrophage colony-stimulating factor 1 (CSF-1). We generated a monoclonal antibody (RG7155) that inhibits CSF-1 receptor (CSF-1R) activation. In vitro RG7155 treatment results in cell death of CSF-1-differentiated macrophages. In animal models, CSF-1R inhibition strongly reduces F4/80+ tumor-associated macrophages accompanied by an increase of the CD8+/CD4+ T cell ratio. Administration of RG7155 to patients led to striking reductions of CSF-1R+CD163+ macrophages in tumor tissues, which translated into clinical objective responses in diffuse-type giant cell tumor (Dt-GCT) patients. | ||
| - | + | Targeting Tumor-Associated Macrophages with Anti-CSF-1R Antibody Reveals a Strategy for Cancer Therapy.,Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I, Jones T, Jucknischke U, Scheiblich S, Kaluza K, Gorr IH, Walz A, Abiraj K, Cassier PA, Sica A, Gomez-Roca C, de Visser KE, Italiano A, Le Tourneau C, Delord JP, Levitsky H, Blay JY, Ruttinger D Cancer Cell. 2014 Jun 16;25(6):846-859. doi: 10.1016/j.ccr.2014.05.016. Epub 2014, Jun 2. PMID:24898549<ref>PMID:24898549</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| + | </div> | ||
| + | <div class="pdbe-citations 4liq" style="background-color:#fffaf0;"></div> | ||
| + | |||
| + | ==See Also== | ||
| + | *[[Colony-stimulating factor receptor 3D structures|Colony-stimulating factor receptor 3D structures]] | ||
| + | == References == | ||
| + | <references/> | ||
| + | __TOC__ | ||
| + | </StructureSection> | ||
| + | [[Category: Homo sapiens]] | ||
| + | [[Category: Large Structures]] | ||
| + | [[Category: Mus musculus]] | ||
| + | [[Category: Benz J]] | ||
| + | [[Category: Gorr IH]] | ||
| + | [[Category: Hertenberger H]] | ||
| + | [[Category: Ries CH]] | ||
Current revision
Structure of the extracellular domain of human CSF-1 receptor in complex with the Fab fragment of RG7155
| 
 | |||||||||||
