3wvb
From Proteopedia
(Difference between revisions)
(6 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==HcgF from Methanocaldococcus jannaschii== | |
+ | <StructureSection load='3wvb' size='340' side='right'caption='[[3wvb]], [[Resolution|resolution]] 1.70Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[3wvb]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Methanocaldococcus_jannaschii_DSM_2661 Methanocaldococcus jannaschii DSM 2661]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3WVB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3WVB FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7Å</td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3wvb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3wvb OCA], [https://pdbe.org/3wvb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3wvb RCSB], [https://www.ebi.ac.uk/pdbsum/3wvb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3wvb ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/Y1251_METJA Y1251_METJA] | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The iron-guanylylpyridinol (FeGP) cofactor of [Fe]-hydrogenase contains a prominent iron centre with an acyl-Fe bond and is the only acyl-organometallic iron compound found in nature. Here, we identify the functions of HcgE and HcgF, involved in the biosynthesis of the FeGP cofactor using structure-to-function strategy. Analysis of the HcgE and HcgF crystal structures with and without bound substrates suggest that HcgE catalyses the adenylylation of the carboxy group of guanylylpyridinol (GP) to afford AMP-GP, and subsequently HcgF catalyses the transesterification of AMP-GP to afford a Cys (HcgF)-S-GP thioester. Both enzymatic reactions are confirmed by in vitro assays. The structural data also offer plausible catalytic mechanisms. This strategy of thioester activation corresponds to that used for ubiquitin activation, a key event in the regulation of multiple cellular processes. It further implicates a nucleophilic attack onto the acyl carbon presumably via an electron-rich Fe(0)- or Fe(I)-carbonyl complex in the Fe-acyl formation. | ||
- | + | Protein-pyridinol thioester precursor for biosynthesis of the organometallic acyl-iron ligand in [Fe]-hydrogenase cofactor.,Fujishiro T, Kahnt J, Ermler U, Shima S Nat Commun. 2015 Apr 17;6:6895. doi: 10.1038/ncomms7895. PMID:25882909<ref>PMID:25882909</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
+ | </div> | ||
+ | <div class="pdbe-citations 3wvb" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Methanocaldococcus jannaschii DSM 2661]] | ||
+ | [[Category: Ermler U]] | ||
+ | [[Category: Fujishiro T]] | ||
+ | [[Category: Shima S]] |
Current revision
HcgF from Methanocaldococcus jannaschii
|