| Structural highlights
Function
XYN2_HYPJR Glycoside hydrolase involved in the hydrolysis of xylan, a major plant cell wall hemicellulose made up of 1,4-beta-linked D-xylopyranose residues. Catalyzes the endohydrolysis of the main-chain 1,4-beta-glycosidic bonds connecting the xylose subunits yielding various xylooligosaccharides and xylose (PubMed:1369024, Ref.5). The catalysis proceeds by a double-displacement reaction mechanism with a putative covalent glycosyl-enzyme intermediate, with retention of the anomeric configuration (PubMed:7988708). Produces xylobiose and xylose as the main degradation products (PubMed:19556747).[1] [2] [3] [4]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The three-dimensional structures of endo-1,4-xylanase II (XYNII) from Trichoderma reesei complexed with 4,5-epoxypentyl beta-D-xyloside (X-O-C5),3,4-epoxybutyl beta-D-xyloside (X-O-C4), and 2,3-epoxypropyl beta-D-xyloside (X-O-C3) were determined by X-ray crystallography. High-resolution measurement revealed clear electron densities for each ligand. Both X-O-C5 and X-O-C3 were found to form a covalent bond with the putative nucleophile Glu86. Unexpectedly, X-O-C4 was found to bind to the putative acid/base catalyst Glu177. In all three complexes, clear conformational changes were found in XYNII compared to the native structure. These changes were largest in the X-O-C3 complex structure.
Covalent binding of three epoxyalkyl xylosides to the active site of endo-1,4-xylanase II from Trichoderma reesei.,Havukainen R, Torronen A, Laitinen T, Rouvinen J Biochemistry. 1996 Jul 23;35(29):9617-24. PMID:8755744[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Torronen A, Mach RL, Messner R, Gonzalez R, Kalkkinen N, Harkki A, Kubicek CP. The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Biotechnology (N Y). 1992 Nov;10(11):1461-5. PMID:1369024
- ↑ Jun H, Bing Y, Keying Z, Xuemei D, Daiwen C. Sequencing and expression of the xylanase gene 2 from Trichoderma reesei Rut C-30 and characterization of the recombinant enzyme and its activity on xylan. J Mol Microbiol Biotechnol. 2009;17(3):101-9. doi: 10.1159/000226590. Epub 2009, Jun 26. PMID:19556747 doi:http://dx.doi.org/10.1159/000226590
- ↑ Biely P, Kremnicky L, Alfoldi J, Tenkanen M. Stereochemistry of the hydrolysis of glycosidic linkage by endo-beta-1,4-xylanases of Trichoderma reesei. FEBS Lett. 1994 Dec 12;356(1):137-40. PMID:7988708
- ↑ Torronen A, Mach RL, Messner R, Gonzalez R, Kalkkinen N, Harkki A, Kubicek CP. The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Biotechnology (N Y). 1992 Nov;10(11):1461-5. PMID:1369024
- ↑ Havukainen R, Torronen A, Laitinen T, Rouvinen J. Covalent binding of three epoxyalkyl xylosides to the active site of endo-1,4-xylanase II from Trichoderma reesei. Biochemistry. 1996 Jul 23;35(29):9617-24. PMID:8755744 doi:10.1021/bi953052n
|