1j8t

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (08:37, 16 August 2023) (edit) (undo)
 
(13 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:1j8t.gif|left|200px]]
 
-
{{Structure
+
==Catalytic Domain of Human Phenylalanine Hydroxylase Fe(II)==
-
|PDB= 1j8t |SIZE=350|CAPTION= <scene name='initialview01'>1j8t</scene>, resolution 1.7&Aring;
+
<StructureSection load='1j8t' size='340' side='right'caption='[[1j8t]], [[Resolution|resolution]] 1.70&Aring;' scene=''>
-
|SITE=
+
== Structural highlights ==
-
|LIGAND= <scene name='pdbligand=FE2:FE (II) ION'>FE2</scene>
+
<table><tr><td colspan='2'>[[1j8t]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1J8T OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1J8T FirstGlance]. <br>
-
|ACTIVITY= [http://en.wikipedia.org/wiki/Phenylalanine_4-monooxygenase Phenylalanine 4-monooxygenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.14.16.1 1.14.16.1]
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7&#8491;</td></tr>
-
|GENE= PAH ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FE2:FE+(II)+ION'>FE2</scene></td></tr>
-
}}
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1j8t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1j8t OCA], [https://pdbe.org/1j8t PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1j8t RCSB], [https://www.ebi.ac.uk/pdbsum/1j8t PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1j8t ProSAT]</span></td></tr>
-
 
+
</table>
-
'''Catalytic Domain of Human Phenylalanine Hydroxylase Fe(II)'''
+
== Disease ==
-
 
+
[https://www.uniprot.org/uniprot/PH4H_HUMAN PH4H_HUMAN] Defects in PAH are the cause of phenylketonuria (PKU) [MIM:[https://omim.org/entry/261600 261600]. PKU is an autosomal recessive inborn error of phenylalanine metabolism, due to severe phenylalanine hydroxylase deficiency. It is characterized by blood concentrations of phenylalanine persistently above 1200 mumol (normal concentration 100 mumol) which usually causes mental retardation (unless low phenylalanine diet is introduced early in life). They tend to have light pigmentation, rashes similar to eczema, epilepsy, extreme hyperactivity, psychotic states and an unpleasant 'mousy' odor.<ref>PMID:8594560</ref> <ref>PMID:2840952</ref> <ref>PMID:2564729</ref> <ref>PMID:2615649</ref> <ref>PMID:1975559</ref> <ref>PMID:1671810</ref> <ref>PMID:2014802</ref> <ref>PMID:1672294</ref> <ref>PMID:1672290</ref> <ref>PMID:1679030</ref> <ref>PMID:1709636</ref> <ref>PMID:1355066</ref> <ref>PMID:1363837</ref> <ref>PMID:1363838</ref> <ref>PMID:8406445</ref> <ref>PMID:8068076</ref> <ref>PMID:7833954</ref> <ref>PMID:8889583</ref> <ref>PMID:8889590</ref> <ref>PMID:9048935</ref> <ref>PMID:9101291</ref> <ref>PMID:9521426</ref> <ref>PMID:9600453</ref> <ref>PMID:10200057</ref> <ref>PMID:9452061</ref> <ref>PMID:9452062</ref> <ref>PMID:9792407</ref> <ref>PMID:9792411</ref> <ref>PMID:9950317</ref> <ref>PMID:10679941</ref> <ref>PMID:11326337</ref> <ref>PMID:11180595</ref> <ref>PMID:11385716</ref> <ref>PMID:11461196</ref> <ref>PMID:12501224</ref> <ref>PMID:18538294</ref> <ref>PMID:22526846</ref> <ref>PMID:22513348</ref> Defects in PAH are the cause of non-phenylketonuria hyperphenylalaninemia (Non-PKU HPA) [MIM:[https://omim.org/entry/261600 261600]. Non-PKU HPA is a mild form of phenylalanine hydroxylase deficiency characterized by phenylalanine levels persistently below 600 mumol, which allows normal intellectual and behavioral development without treatment. Non-PKU HPA is usually caused by the combined effect of a mild hyperphenylalaninemia mutation and a severe one. Defects in PAH are the cause of hyperphenylalaninemia (HPA) [MIM:[https://omim.org/entry/261600 261600]. HPA is the mildest form of phenylalanine hydroxylase deficiency.<ref>PMID:9521426</ref> <ref>PMID:11385716</ref> <ref>PMID:12501224</ref> <ref>PMID:1358789</ref> <ref>PMID:8098245</ref> <ref>PMID:8088845</ref> <ref>PMID:9852673</ref> <ref>PMID:11935335</ref>
-
 
+
== Function ==
-
==Overview==
+
[https://www.uniprot.org/uniprot/PH4H_HUMAN PH4H_HUMAN]
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/j8/1j8t_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1j8t ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
The crystal structures of the catalytic domain (DeltaN1-102/DeltaC428-452) of human phenylalanine hydroxylase (hPheOH) in its catalytically competent Fe(II) form and binary complex with the reduced pterin cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) have been determined to 1.7 and 1.5 A, respectively. When compared with the structures reported for various catalytically inactive Fe(III) forms, several important differences have been observed, notably at the active site. Thus, the non-liganded hPheOH-Fe(II) structure revealed well defined electron density for only one of the three water molecules reported to be coordinated to the iron in the high-spin Fe(III) form, as well as poor electron density for parts of the coordinating side-chain of Glu330. The reduced cofactor (BH4), which adopts the expected half-semi chair conformation, is bound in the second coordination sphere of the catalytic iron with a C4a-iron distance of 5.9 A. BH4 binds at the same site as L-erythro-7,8-dihydrobiopterin (BH2) in the binary hPheOH-Fe(III)-BH2 complex forming an aromatic pi-stacking interaction with Phe254 and a network of hydrogen bonds. However, compared to that structure the pterin ring is displaced about 0.5 A and rotated about 10 degrees, and the torsion angle between the hydroxyl groups of the cofactor in the dihydroxypropyl side-chain has changed by approximately 120 degrees enabling O2' to make a strong hydrogen bond (2.4 A) with the side-chain oxygen of Ser251. Carbon atoms in the dihydroxypropyl side-chain make several hydrophobic contacts with the protein. The iron is six-coordinated in the binary complex, but the overall coordination geometry is slightly different from that of the Fe(III) form. Most important was the finding that the binding of BH4 causes the Glu330 ligand to change its coordination to the iron when comparing with non-liganded hPheOH-Fe(III) and the binary hPheOH-Fe(III)-BH2 complex.
The crystal structures of the catalytic domain (DeltaN1-102/DeltaC428-452) of human phenylalanine hydroxylase (hPheOH) in its catalytically competent Fe(II) form and binary complex with the reduced pterin cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4) have been determined to 1.7 and 1.5 A, respectively. When compared with the structures reported for various catalytically inactive Fe(III) forms, several important differences have been observed, notably at the active site. Thus, the non-liganded hPheOH-Fe(II) structure revealed well defined electron density for only one of the three water molecules reported to be coordinated to the iron in the high-spin Fe(III) form, as well as poor electron density for parts of the coordinating side-chain of Glu330. The reduced cofactor (BH4), which adopts the expected half-semi chair conformation, is bound in the second coordination sphere of the catalytic iron with a C4a-iron distance of 5.9 A. BH4 binds at the same site as L-erythro-7,8-dihydrobiopterin (BH2) in the binary hPheOH-Fe(III)-BH2 complex forming an aromatic pi-stacking interaction with Phe254 and a network of hydrogen bonds. However, compared to that structure the pterin ring is displaced about 0.5 A and rotated about 10 degrees, and the torsion angle between the hydroxyl groups of the cofactor in the dihydroxypropyl side-chain has changed by approximately 120 degrees enabling O2' to make a strong hydrogen bond (2.4 A) with the side-chain oxygen of Ser251. Carbon atoms in the dihydroxypropyl side-chain make several hydrophobic contacts with the protein. The iron is six-coordinated in the binary complex, but the overall coordination geometry is slightly different from that of the Fe(III) form. Most important was the finding that the binding of BH4 causes the Glu330 ligand to change its coordination to the iron when comparing with non-liganded hPheOH-Fe(III) and the binary hPheOH-Fe(III)-BH2 complex.
-
==Disease==
+
High resolution crystal structures of the catalytic domain of human phenylalanine hydroxylase in its catalytically active Fe(II) form and binary complex with tetrahydrobiopterin.,Andersen OA, Flatmark T, Hough E J Mol Biol. 2001 Nov 23;314(2):279-91. PMID:11718561<ref>PMID:11718561</ref>
-
Known diseases associated with this structure: Hyperphenylalaninemia, mild OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=261600 261600]], Phenylketonuria OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=261600 261600]]
+
-
==About this Structure==
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
1J8T is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1J8T OCA].
+
</div>
 +
<div class="pdbe-citations 1j8t" style="background-color:#fffaf0;"></div>
-
==Reference==
+
==See Also==
-
High resolution crystal structures of the catalytic domain of human phenylalanine hydroxylase in its catalytically active Fe(II) form and binary complex with tetrahydrobiopterin., Andersen OA, Flatmark T, Hough E, J Mol Biol. 2001 Nov 23;314(2):279-91. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/11718561 11718561]
+
*[[Hydroxylases 3D structures|Hydroxylases 3D structures]]
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
-
[[Category: Phenylalanine 4-monooxygenase]]
+
[[Category: Large Structures]]
-
[[Category: Single protein]]
+
[[Category: Andersen OA]]
-
[[Category: Andersen, O A.]]
+
[[Category: Flatmark T]]
-
[[Category: Flatmark, T.]]
+
[[Category: Hough E]]
-
[[Category: Hough, E.]]
+
-
[[Category: FE2]]
+
-
[[Category: 2-his-1-carboxylate facial triad]]
+
-
[[Category: ferrous iron]]
+
-
 
+
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 12:00:12 2008''
+

Current revision

Catalytic Domain of Human Phenylalanine Hydroxylase Fe(II)

PDB ID 1j8t

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools