Sigma factor

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (10:03, 1 April 2020) (edit) (undo)
 
(13 intermediate revisions not shown.)
Line 1: Line 1:
 +
<StructureSection load='4lup' size='340' side='right' caption='Structure of sigma factor of E.Coli RNAP (grey) in complex with promoter DNA and ethylene glycol (PDB code [[4lup]]).' scene=''>
-
<StructureSection load='4lup' size='340' side='right' caption='Structure of sigma factor of E.Coli RNAP in complex with Promoter DNA (PDB code [[4lup]]).' scene=''>
 
- 
-
[[Image:2h27.jpg|left|200px]]
 
== Overview ==
== Overview ==
-
'''Sigma (σ) factor''' is the peoptide subunit needed for the initiation of RNA transcription in prokaryotic organisms <scene name='59/591940/Sigma_factor_in_enzyme/1'>as seen here</scene>. As opposed to eukaryotes, who utilize a variety of proteins to initiate gene transcription, prokaryotic transcription is initiated almost completely by a σ-factor. The large and biologically essential protein, RNA polymerase (RNAP), contains one σ-subunit, which binds <scene name='59/591940/Dna_promoter/3'>DNA promoter sequences</scene>, located upstream of transcription start sites.
+
'''Sigma (σ) factor''' is the peoptide subunit needed for the initiation of RNA transcription in prokaryotic organisms <scene name='59/591940/Sigma_factor_in_enzyme/1'>as seen here</scene>. As opposed to eukaryotes, who utilize a variety of proteins to initiate gene transcription, prokaryotic transcription is initiated almost completely by a σ-factor. The large and biologically essential protein, RNA polymerase (RNAP), contains one σ-subunit, which binds <scene name='59/591940/Dna_promoter/3'>DNA promoter sequences</scene>, located upstream of transcription start sites. <br />
 +
*'''Sigma factor 70''' or '''RpoD''' is the primary initiation factor during exponential growth. <br />
 +
*'''Sigma factor 45''' or '''RpoN''' is responsible for the expression of genes involved in Arg catabolism.<br />
 +
*'''Sigma factor 38''' or '''RpoS''' acts as the master regulator of the general stress response in ''E. coli'' .<br />
== Function and Structure ==
== Function and Structure ==
-
The '''σ-factor''' performs two chief functions: to direct the catalytic core of RNAP to the promotoer upstream of the +1 start site of transcription, and finally to assist in the initiation of strand seperation of double-helical DNA, forming the transcription "bubble." Each gene promoter utilizes a specific promoter region about 40 bp upstream of the transcription start site, and therefore different σ-factors play a role in the regulation of different genes. This process, which includes association of the σ-factor with RNAP to recognize and open DNA at the promoter site, followed by dissociation of the σ to allow elongation, which can then activate additional RNAP enzymes, is referred to as the '''σ-cycle'''.
+
The '''σ-factor''' performs two chief functions: to direct the catalytic core of RNAP to the promotoer upstream of the +1 start site of transcription, and finally to assist in the initiation of strand seperation of double-helical DNA, forming the transcription "bubble."[1] Each gene promoter utilizes a specific promoter region about 40 bp upstream of the transcription start site, and therefore different σ-factors play a role in the regulation of different genes [2]. This process, which includes association of the σ-factor with RNAP to recognize and open DNA at the promoter site, followed by dissociation of the σ to allow elongation, which can then activate additional RNAP enzymes, is referred to as the '''σ-cycle''' [3].
===Domain Strucure & DNA interactions===
===Domain Strucure & DNA interactions===
-
There are many types of σ-subunits, and each recognizes a unique promoter sequence. Furthmore, each unique σ is composed of a variable number of structured domains. The simplest σ-factors have two domains, few have three, and most, called '''housekeeping σ-factors''', have 4 domains, given the names σ(4), σ(3), σ(2), and σ(1.1). All domains are linked by very flexible peptide '''linkers''' which can extend very long distances. Each of these domains utilizes DNA-binding determinants, or domains that recognize specific sequences and conformations in DNA. Most commonly, these recognized sequences occur at the -35 and -10 locations upstream of the +1 site. One such DNA-binding motif, '''the helix-turn-helix motif''' (<scene name='59/591940/Hth_motif/2'>HTH</scene>), helps specifically recognize DNA promoters at both the -35 and -10 positions. This HTH motif, used by most σ-factors, maintains its specificity and accuracy by binding in the '''major groove''' of DNA, where it can interact with the base pairs in the DNA double-helix. In many prokaryotes, these portions of DNA maintain consensus adenosine and thymine sequences, such as <scene name='59/591940/Ta_sequence/1'>TATAAT</scene>.
+
There are many types of σ-subunits, and each recognizes a unique promoter sequence. Furthmore, each unique σ is composed of a variable number of structured domains. The simplest σ-factors have two domains, few have three, and most, called '''housekeeping σ-factors''', have 4 domains, given the names σ(4), σ(3), σ(2), and σ(1.1) [1,3]. All domains are linked by very flexible peptide '''linkers''' which can extend very long distances. Each of these domains utilizes DNA-binding determinants, or domains that recognize specific sequences and conformations in DNA. Most commonly, these recognized sequences occur at the -35 and -10 locations upstream of the +1 site. One such DNA-binding motif, '''the helix-turn-helix motif''' (<scene name='59/591940/Hth_motif/2'>HTH</scene>), helps specifically recognize DNA promoters at both the -35 and -10 positions [1]. This HTH motif, used by most σ-factors, maintains its specificity and accuracy by binding in the '''major groove''' of DNA, where it can interact with the base pairs in the DNA double-helix. In many prokaryotes, these portions of DNA maintain consensus adenosine and thymine sequences [1,2], such as <scene name='59/591940/Ta_sequence/1'>TATAAT</scene>.
===Transcription Bubble===
===Transcription Bubble===
-
The <scene name='59/591940/Transcription_bubble/1'>transcription bubble</scene>, also referred to as the '''open complex''' is formed through the common '''housekeeping σ factors''' which unwind about 13 bp of duplex DNA in an ATP independent process. Research has shown that σ factors require invariant basic and aromatic residues (Phe, Tyr, Trp) critical for this formation. The process of bubble formation begins at the -11 formation (usually A) and propogates to +1 site, through a phenomenon called <scene name='59/591940/Transcription_bubble_flipped/1'>Base Flipping</scene>, which interrupts the stacking interactions stabilizing the double helix conformation. As this process occurs and the DNA transitions into the open promoter complex, certain RNAP-σ contacts are lost, initiating the dissociation of σ. In summary, the processes of -35 and -10 motif sequence recognition and helix strand separation are coupled by the σ factor.
+
The <scene name='59/591940/Transcription_bubble/1'>transcription bubble</scene>, also referred to as the '''open complex''' is formed through the common '''housekeeping σ factors''' which unwind about 13 bp of duplex DNA in an ATP independent process. Research has shown that σ factors require invariant basic and aromatic residues (Phe, Tyr, Trp) critical for this formation [1]. The process of bubble formation begins at the -11 formation (usually A) and propogates to +1 site, through a phenomenon called <scene name='59/591940/Transcription_bubble_flipped/1'>Base Flipping</scene>, which interrupts the stacking interactions stabilizing the double helix conformation [1]. As this process occurs and the DNA transitions into the open promoter complex, certain RNAP-σ contacts are lost, initiating the dissociation of σ. In summary, the processes of -35 and -10 motif sequence recognition and helix strand separation are coupled by the σ factor.
==Restriction==
==Restriction==
-
Initiation of prokaryotic transcription requires cooperation between the σ peptide and RNAP. Without these interactions, no transcription is possible.
+
Initiation of prokaryotic transcription requires cooperation between the σ peptide and RNAP. Without these fundamental interactions, no transcription is possible.
===Comformational and Autoinhibitory===
===Comformational and Autoinhibitory===
-
Normally, σ-factor domains cannot bind to promoters on their own. These domains usually are placed in very compacted positions relative to each other, a conformation that buries DNA-binding determinants. This type of restriction is called '''conformational restriction'''. Additionally, in housekeeping σs, a domain called the '''σ(1.1)''' stabilizes the compact conformation mentioned above, thereby preventing any promoter recognition. This method of restricting the binding abilities of isolated σ's is called '''autoinhibitory inhibition'''.
+
Normally, σ-factor domains cannot bind to promoters on their own. These domains usually are placed in very compacted positions relative to each other, a conformation that buries DNA-binding determinants. This type of restriction is called '''conformational restriction'''[1]. Additionally, in housekeeping σs, a domain called the '''σ(1.1)''' stabilizes the compact conformation mentioned above, thereby preventing any promoter recognition. This method of restricting the binding abilities of isolated σ's is called '''autoinhibitory inhibition'''[1].
===anti-σ's===
===anti-σ's===
An additional method of restriction is through the action of '''anti-σ's''', which act by making stable interactions with σ-domains, such as σ
An additional method of restriction is through the action of '''anti-σ's''', which act by making stable interactions with σ-domains, such as σ
-
(4), which allows them to make energy-favorable interactions with RNAP residues. This causes a cascading "peeling off" effect of other σ-domains from the RNAP, preventing any interaction with duplex DNA and inhibiting transcription in an analogous process to competitive inhibition.
+
(4), which allows them to make energy-favorable interactions with RNAP residues. This causes a cascading "peeling off" effect of other σ-domains from the RNAP, preventing any interaction with duplex DNA and inhibiting transcription in an analogous process to competitive inhibition [3].
== Gene Regulation and Differentiation ==
== Gene Regulation and Differentiation ==
-
Since σ-factors are exclusively linked to gene expression in prokaryotic organisms, the variety of σ-factors in a cell dictate how and what genes are transcribed. Specialized function in cells, therefore, is highly moderated by its arsenal of σ-subunits. In fact, cellular development and differentiation are directly impacted and carried out by "cascades" of σ-factors. In the early stages of development, '''early genes''' are transcribed by basic '''bacterial σ-factors'''. These genes are therefore transcribed to give new σ-factors, which in turn activate additional genes, and so on. This process of σ-factor cascades demonstrates the versatile and essential biologic functions of the RNAP subunit, σ.
+
Since σ-factors are exclusively linked to gene expression in prokaryotic organisms, the variety of σ-factors in a cell dictate how and what genes are transcribed. Specialized function in cells, therefore, is highly moderated by its arsenal of σ-subunits. In fact, cellular development and differentiation are directly impacted and carried out by "cascades" of σ-factors. In the early stages of development, '''early genes'''[2] are transcribed by basic '''bacterial σ-factors'''. These genes are therefore transcribed to give new σ-factors, which in turn activate additional genes, and so on [2]. This process of σ-factor cascades demonstrates the versatile and essential biologic functions of the RNAP subunit, σ.
-
 
+
==3D structures of sigma factor==
==3D structures of sigma factor==
 +
[[Sigma factor 3D structures]]
-
Updated on {{REVISIONDAY2}}-{{MONTHNAME|{{REVISIONMONTH}}}}-{{REVISIONYEAR}}
+
</StructureSection>
-
 
+
-
===Sigma factor===
+
-
 
+
-
[[1ku2]] – TaSF region 1.2-3.1 – ''Thermus aquaticus''<br />
+
-
[[1ku3]] – TaSF region 4 (mutant)<br />
+
-
[[3les]] – TaSF residues 93-271<br />
+
-
[[1sig]] – EcSF – ''Escherichia coli''<br />
+
-
[[2mao]] – EcSF region 2 - NMR<br />
+
-
[[1tty]] – TmSF-70 region 4 – ''Thermotoga maritima''<br />
+
-
[[1tty]] – TmSF-70 region 1.1 (mutant) - NMR<br />
+
-
[[2ahq]] – AaSF-54 C terminal – ''Aquifex aeolicus'' - NMR<br />
+
-
[[2k9l]], [[2k9m]] – AaSF-54 core domain - NMR<br />
+
-
[[3mzy]] – SF-H – ''Fusobacterium nucleatum''<br />
+
-
 
+
-
===Sigma factor complex with DNA===
+
-
 
+
-
[[3ugo]], [[3ugp]] - TaSF region 2 + DNA<br />
+
-
[[4ki2]] - TaSF region 2-3 + DNA<br />
+
-
[[2h27]] – EcSF-E region 4 + DNA<br />
+
-
[[2map]] – EcSF region 2 + DNA - NMR<br />
+
-
[[2o8k]], [[2o9l]] – AaSF-54 C terminal + DNA - NMR<br />
+
-
 
+
-
===Sigma factor complex with protein===
+
-
 
+
-
[[3lev]] – TaSF residues 93-271 + antibody<br />
+
-
[[1or7]] – EcSF-E + σ-E factor negative regulatory protein <br />
+
-
[[4lup]] – EcSF residues 3-92 + EcSF region 2 <br />
+
-
[[1tlh]] – EcSF-70 region 4 + anti-σ factor<br />
+
-
[[2p7v]] – EcSF-70 region 4 + regulator of σ D<br />
+
-
[[1rp3]], [[1sc5]] – AaSF-28 + anti-σ factor FLGM <br />
+
-
[[3hug]] – MtSF + membrane protein – ''Mycobacterium tuberculosis''<br />
+
-
[[4nqw]] – MtSF-K region 4 + anti-σ factor<br />
+
-
[[3wod]] – TtSF + RNAP subunits α,β,β’,ω - ''Thermus thermophilus'' <br />
+
-
[[4mq9]] – TtSF-70 + RNAP subunits α,β,β’,ω + antibiotic <br />
+
-
[[1l9u]] – TaSF region 1.1-4 + RNAP subunits α,β,β’,ω<br />
+
-
[[4mex]] – EcSF-70 + RNAP subunits α,β,β’,ω + antibiotic <br />
+
-
[[4mey]], [[4ljz]], [[4lk1]] – EcSF-70 + RNAP subunits α,β,β’,ω <br />
+
-
[[4lk0]], [[4llg]] – EcSF-70 + EcRNAP subunits α,β,β’,ω + RNAP inhibitor<br />
+
-
[[4cxf]] – SF CNRH + CNRY – ''Cupriavidus metallidurans''<br />
+
-
[[4g6d]], [[4g8x]], [[4g94]] – SF-70 region 4 + Orf067 – ''Staphylococcus aureus''<br />
+
-
 
+
-
===Sigma factor complex with protein and DNA===
+
-
 
+
-
[[1rio]] - TaSF region 4 + repression protein CI + DNA<br />
+
-
[[4oin]], [[4oip]], [[4oiq]], [[4oir]] – TtSF-A + RNAP subunits α,β,β’,ω + antibiotic + DNA<br />
+
-
[[4oio]] – TtSF-A + RNAP subunits α,β,β’,ω + DNA<br />
+
-
[[3n97]] – TaSF region 4 + RNAP subunits α + DNA<br />
+
-
[[1l9u]] – TaSF + RNAP subunits α,β,β’,ω + DNA – Cryo EM <br />
+
-
[[3iyd]] – EcSF-70 + EcRNAP subunits α,β,β’,ω + catabolite gene activator + DNA<br />
+
== References ==
== References ==
-
Felklistov, Andrey, Brian D. Sharon, Seth A. Darst, and Carol A. Gross. "Bacterial Sigma Factors: A Historical, Structural, and Genomic Perspective." The Annual Review of Microbiology 68 (2014): 357-76.
+
1. Felklistov, Andrey, Brian D. Sharon, Seth A. Darst, and Carol A. Gross. "Bacterial Sigma Factors: A Historical, Structural, and Genomic Perspective." The Annual Review of Microbiology 68 (2014): 357-76.
-
Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. Fundamentals of Biochemistry: Life at the Molecular Level. 3rd ed. Hoboken, NJ: Wiley, 2008.
+
2. Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. Fundamentals of Biochemistry: Life at the Molecular Level. 3rd ed. Hoboken, NJ: Wiley, 2008.
-
Mooney, R. A., S. A. Darst, and R. Landick. "Sigma and RNA Polymerase: An On-again, Off-again Relationship?" Molecular Cell 20.3 (2005): 335-45.
+
3. Mooney, R. A., S. A. Darst, and R. Landick. "Sigma and RNA Polymerase: An On-again, Off-again Relationship?" Molecular Cell 20.3 (2005): 335-45.
<references/>
<references/>
[[Category:Topic Page]]
[[Category:Topic Page]]

Current revision

Structure of sigma factor of E.Coli RNAP (grey) in complex with promoter DNA and ethylene glycol (PDB code 4lup).

Drag the structure with the mouse to rotate

References

1. Felklistov, Andrey, Brian D. Sharon, Seth A. Darst, and Carol A. Gross. "Bacterial Sigma Factors: A Historical, Structural, and Genomic Perspective." The Annual Review of Microbiology 68 (2014): 357-76.

2. Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. Fundamentals of Biochemistry: Life at the Molecular Level. 3rd ed. Hoboken, NJ: Wiley, 2008.

3. Mooney, R. A., S. A. Darst, and R. Landick. "Sigma and RNA Polymerase: An On-again, Off-again Relationship?" Molecular Cell 20.3 (2005): 335-45.


Proteopedia Page Contributors and Editors (what is this?)

Wally Novak, Michal Harel

Personal tools