4rj3
From Proteopedia
(Difference between revisions)
m (Protected "4rj3" [edit=sysop:move=sysop]) |
|||
(6 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==CDK2 with EGFR inhibitor compound 8== | |
+ | <StructureSection load='4rj3' size='340' side='right'caption='[[4rj3]], [[Resolution|resolution]] 1.63Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[4rj3]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4RJ3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4RJ3 FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.63Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3QS:1-CYCLOPENTYL-N-[2-(4-METHOXYPIPERIDIN-1-YL)PYRIMIDIN-4-YL]-1H-PYRROLO[3,2-C]PYRIDIN-6-AMINE'>3QS</scene>, <scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=ALY:N(6)-ACETYLLYSINE'>ALY</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4rj3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4rj3 OCA], [https://pdbe.org/4rj3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4rj3 RCSB], [https://www.ebi.ac.uk/pdbsum/4rj3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4rj3 ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/CDK2_HUMAN CDK2_HUMAN] Serine/threonine-protein kinase involved in the control of the cell cycle; essential for meiosis, but dispensable for mitosis. Phosphorylates CTNNB1, USP37, p53/TP53, NPM1, CDK7, RB1, BRCA2, MYC, NPAT, EZH2. Interacts with cyclins A, B1, B3, D, or E. Triggers duplication of centrosomes and DNA. Acts at the G1-S transition to promote the E2F transcriptional program and the initiation of DNA synthesis, and modulates G2 progression; controls the timing of entry into mitosis/meiosis by controlling the subsequent activation of cyclin B/CDK1 by phosphorylation, and coordinates the activation of cyclin B/CDK1 at the centrosome and in the nucleus. Crucial role in orchestrating a fine balance between cellular proliferation, cell death, and DNA repair in human embryonic stem cells (hESCs). Activity of CDK2 is maximal during S phase and G2; activated by interaction with cyclin E during the early stages of DNA synthesis to permit G1-S transition, and subsequently activated by cyclin A2 (cyclin A1 in germ cells) during the late stages of DNA replication to drive the transition from S phase to mitosis, the G2 phase. EZH2 phosphorylation promotes H3K27me3 maintenance and epigenetic gene silencing. Phosphorylates CABLES1 (By similarity). Cyclin E/CDK2 prevents oxidative stress-mediated Ras-induced senescence by phosphorylating MYC. Involved in G1-S phase DNA damage checkpoint that prevents cells with damaged DNA from initiating mitosis; regulates homologous recombination-dependent repair by phosphorylating BRCA2, this phosphorylation is low in S phase when recombination is active, but increases as cells progress towards mitosis. In response to DNA damage, double-strand break repair by homologous recombination a reduction of CDK2-mediated BRCA2 phosphorylation. Phosphorylation of RB1 disturbs its interaction with E2F1. NPM1 phosphorylation by cyclin E/CDK2 promotes its dissociates from unduplicated centrosomes, thus initiating centrosome duplication. Cyclin E/CDK2-mediated phosphorylation of NPAT at G1-S transition and until prophase stimulates the NPAT-mediated activation of histone gene transcription during S phase. Required for vitamin D-mediated growth inhibition by being itself inactivated. Involved in the nitric oxide- (NO) mediated signaling in a nitrosylation/activation-dependent manner. USP37 is activated by phosphorylation and thus triggers G1-S transition. CTNNB1 phosphorylation regulates insulin internalization.<ref>PMID:10499802</ref> <ref>PMID:11051553</ref> <ref>PMID:10995386</ref> <ref>PMID:10995387</ref> <ref>PMID:10884347</ref> <ref>PMID:11113184</ref> <ref>PMID:15800615</ref> <ref>PMID:18372919</ref> <ref>PMID:20147522</ref> <ref>PMID:20079829</ref> <ref>PMID:20935635</ref> <ref>PMID:20195506</ref> <ref>PMID:19966300</ref> <ref>PMID:21262353</ref> <ref>PMID:21596315</ref> <ref>PMID:21319273</ref> <ref>PMID:17495531</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Activating mutations within the epidermal growth factor receptor (EGFR) kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in nonsmall cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR. We describe the evolution of HTS hits derived from Jak2/Tyk2 inhibitors into selective EGFR inhibitors. X-ray crystal structures revealed two distinct binding modes and enabled the design of a selective series of novel diaminopyrimidine-based inhibitors with good potency against T790M-containing mutants of EGFR, high selectivity over wtEGFR, broad kinase selectivity, and desirable physicochemical properties. | ||
- | + | Discovery of Selective and Noncovalent Diaminopyrimidine-Based Inhibitors of Epidermal Growth Factor Receptor Containing the T790M Resistance Mutation.,Hanan EJ, Eigenbrot C, Bryan MC, Burdick DJ, Chan BK, Chen Y, Dotson J, Heald RA, Jackson PS, La H, Lainchbury MD, Malek S, Purkey HE, Schaefer G, Schmidt S, Seward EM, Sideris S, Tam C, Wang S, Yeap SK, Yen I, Yin J, Yu C, Zilberleyb I, Heffron TP J Med Chem. 2014 Nov 20. PMID:25383627<ref>PMID:25383627</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
+ | </div> | ||
+ | <div class="pdbe-citations 4rj3" style="background-color:#fffaf0;"></div> | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Cyclin-dependent kinase 3D structures|Cyclin-dependent kinase 3D structures]] | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Homo sapiens]] | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Eigenbrot C]] | ||
+ | [[Category: Yin J]] |
Current revision
CDK2 with EGFR inhibitor compound 8
|