4wkt
From Proteopedia
(Difference between revisions)
m (Protected "4wkt" [edit=sysop:move=sysop]) |
|||
(6 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==n-Alkylboronic Acid Inhibitors Reveal Determinants of Ligand Specificity in the Quorum-Quenching and Siderophore Biosynthetic Enzyme PvdQ== | |
+ | <StructureSection load='4wkt' size='340' side='right'caption='[[4wkt]], [[Resolution|resolution]] 1.78Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[4wkt]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Pseudomonas_aeruginosa_PAO1 Pseudomonas aeruginosa PAO1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4WKT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4WKT FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.782Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BUB:1-BUTANE+BORONIC+ACID'>BUB</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4wkt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4wkt OCA], [https://pdbe.org/4wkt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4wkt RCSB], [https://www.ebi.ac.uk/pdbsum/4wkt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4wkt ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/PVDQ_PSEAE PVDQ_PSEAE] Catalyzes the deacylation of acyl-homoserine lactone (AHL or acyl-HSL), releasing homoserine lactone (HSL) and the corresponding fatty acid. Possesses a specificity for the degradation of long-chain acyl-HSLs (side chains of 11 to 14 carbons in length). Degrades 3-oxo-C12-HSL, one of the two main AHL signal molecules of P.aeruginosa, and thereby functions as a quorum quencher, inhibiting the las quorum-sensing system. Therefore, may enable P.aeruginosa to modulate its own quorum-sensing-dependent pathogenic potential. Also appears to be required for pyoverdin biosynthesis.<ref>PMID:16495538</ref> <ref>PMID:14532048</ref> <ref>PMID:12686626</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The enzyme PvdQ (E.C. 3.5.1.97) from Pseudomonas aeruginosa is an N-terminal nucleophile hydrolase that catalyzes the removal of an N-myristyl substituent from a biosynthetic precursor of the iron-chelating siderophore pyoverdine. Inhibitors of pyoverdine biosynthesis are potential antibiotics since iron is essential for growth and scarce in most infections. PvdQ also catalyzes hydrolytic amide bond cleavage of selected N-acyl-l-homoserine lactone quorum-sensing signals used by some Gram-negative pathogens to coordinate the transcription of virulence factors. The resulting quorum-quenching activity of PvdQ has potential applications in antivirulence therapies. To inform both inhibitor design and enzyme engineering efforts, a series of n-alkylboronic acid inhibitors of PvdQ was characterized to reveal determinants of ligand selectivity. A simple homologation series results in compounds with Ki values that span from 4.7 mM to 190 pM, with a dependence of DeltaGbind values on chain length of -1.0 kcal/mol/CH2. X-ray crystal structures are determined for the PvdQ complexes with 1-ethyl-, 1-butyl-, 1-hexyl-, and 1-octylboronic acids at 1.6, 1.8, 2.0, and 2.1 A resolution, respectively. The 1-hexyl- and 1-octylboronic acids form tetrahedral adducts with the active-site N-terminal Ser217 in the beta-subunit of PvdQ, and the n-alkyl substituents are bound in the acyl-group binding site. The 1-ethyl- and 1-butylboronic acids also form adducts with Ser217 but instead form trigonal planar adducts and extend their n-alkyl substituents into an alternative binding site. These results are interpreted to propose a ligand discrimination model for PvdQ that informs the development of PvdQ-related tools and therapeutics. | ||
- | + | n-Alkylboronic Acid Inhibitors Reveal Determinants of Ligand Specificity in the Quorum-Quenching and Siderophore Biosynthetic Enzyme PvdQ.,Clevenger KD, Wu R, Liu D, Fast W Biochemistry. 2014 Oct 28;53(42):6679-86. doi: 10.1021/bi501086s. Epub 2014 Oct, 17. PMID:25290020<ref>PMID:25290020</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
+ | </div> | ||
+ | <div class="pdbe-citations 4wkt" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Pseudomonas aeruginosa PAO1]] | ||
+ | [[Category: Clevenger KD]] | ||
+ | [[Category: Fast W]] | ||
+ | [[Category: Liu D]] | ||
+ | [[Category: Wu R]] |
Current revision
n-Alkylboronic Acid Inhibitors Reveal Determinants of Ligand Specificity in the Quorum-Quenching and Siderophore Biosynthetic Enzyme PvdQ
|