4p65

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:11, 27 September 2023) (edit) (undo)
 
(5 intermediate revisions not shown.)
Line 1: Line 1:
 +
==Crystal structure of an cyclohexylalanine substituted insulin analog.==
==Crystal structure of an cyclohexylalanine substituted insulin analog.==
-
<StructureSection load='4p65' size='340' side='right' caption='[[4p65]], [[Resolution|resolution]] 1.50&Aring;' scene=''>
+
<StructureSection load='4p65' size='340' side='right'caption='[[4p65]], [[Resolution|resolution]] 1.50&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[4p65]] is a 12 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4P65 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4P65 FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[4p65]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4P65 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4P65 FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=IPH:PHENOL'>IPH</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.5&#8491;</td></tr>
-
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=ALC:2-AMINO-3-CYCLOHEXYL-PROPIONIC+ACID'>ALC</scene>, <scene name='pdbligand=ORN:L-ORNITHINE'>ORN</scene></td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ALC:2-AMINO-3-CYCLOHEXYL-PROPIONIC+ACID'>ALC</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=IPH:PHENOL'>IPH</scene>, <scene name='pdbligand=ORN:L-ORNITHINE'>ORN</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4p65 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4p65 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4p65 RCSB], [http://www.ebi.ac.uk/pdbsum/4p65 PDBsum]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4p65 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4p65 OCA], [https://pdbe.org/4p65 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4p65 RCSB], [https://www.ebi.ac.uk/pdbsum/4p65 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4p65 ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
-
[[http://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:[http://omim.org/entry/176730 176730]].<ref>PMID:3470784</ref> <ref>PMID:2196279</ref> <ref>PMID:4019786</ref> <ref>PMID:1601997</ref> Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:[http://omim.org/entry/125852 125852]]. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.<ref>PMID:18192540</ref> Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:[http://omim.org/entry/606176 606176]]. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.<ref>PMID:17855560</ref> <ref>PMID:18162506</ref> Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:[http://omim.org/entry/613370 613370]]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.<ref>PMID:18192540</ref> <ref>PMID:18162506</ref> <ref>PMID:20226046</ref>
+
[https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN] Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:[https://omim.org/entry/176730 176730].<ref>PMID:3470784</ref> <ref>PMID:2196279</ref> <ref>PMID:4019786</ref> <ref>PMID:1601997</ref> Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:[https://omim.org/entry/125852 125852]. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.<ref>PMID:18192540</ref> Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:[https://omim.org/entry/606176 606176]. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.<ref>PMID:17855560</ref> <ref>PMID:18162506</ref> Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:[https://omim.org/entry/613370 613370]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.<ref>PMID:18192540</ref> <ref>PMID:18162506</ref> <ref>PMID:20226046</ref>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.
+
[https://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of PheB24, an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, MetB24 was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchor at the hormone-receptor interface. These findings motivated further substitution of PheB24 by cyclohexanylalanine (Cha), which contains a non-planar aliphatic ring. Contrary to expectations, ChaB24-insulin likewise exhibited high activity. Further, its resistance to fibrillation and rapid rate of hexamer disassembly-properties of potential therapeutic advantage-were enhanced. The crystal structure of the ChaB24 analog, determined as an R6 zinc-stabilized hexamer at a resolution of 1.5 A, closely resembles that of wild-type insulin. The non-planar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of PheB24 at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Our results highlight in particular the utility of non-aromatic side chains as probes of the B24 pocket and suggest that the non-standard Cha side chain may have therapeutic utility.
 +
 
 +
Aromatic Anchor at an Invariant Hormone-Receptor Interface. FUNCTION OF INSULIN RESIDUE B24 WITH APPLICATION TO PROTEIN DESIGN.,Pandyarajan V, Smith BJ, Phillips NB, Whittaker L, Cox GP, Wickramasinghe N, Menting JG, Wan ZL, Whittaker J, Ismail-Beigi F, Lawrence MC, Weiss MA J Biol Chem. 2014 Oct 10. pii: jbc.M114.608562. PMID:25305014<ref>PMID:25305014</ref>
 +
 
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 4p65" style="background-color:#fffaf0;"></div>
 +
 
 +
==See Also==
 +
*[[Insulin 3D Structures|Insulin 3D Structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Pandyarajan, V.]]
+
[[Category: Homo sapiens]]
-
[[Category: Wan, Z.]]
+
[[Category: Large Structures]]
-
[[Category: Weiss, M A.]]
+
[[Category: Pandyarajan V]]
-
[[Category: Hormone]]
+
[[Category: Wan Z]]
-
[[Category: Non-standard mutagenesis]]
+
[[Category: Weiss MA]]
-
[[Category: Protein hormone]]
+

Current revision

Crystal structure of an cyclohexylalanine substituted insulin analog.

PDB ID 4p65

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools