4wua
From Proteopedia
(Difference between revisions)
m (Protected "4wua" [edit=sysop:move=sysop]) |
|||
| (5 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | '''Unreleased structure''' | ||
| - | + | ==Crystal structure of human SRPK1 complexed to an inhibitor SRPIN340== | |
| + | <StructureSection load='4wua' size='340' side='right'caption='[[4wua]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[4wua]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4WUA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4WUA FirstGlance]. <br> | ||
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> | ||
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=3UL:N-[2-(1-PIPERIDINYL)-5-(TRIFLUOROMETHYL)PHENYL]-4-PYRIDINECARBOXAMIDE'>3UL</scene>, <scene name='pdbligand=CIT:CITRIC+ACID'>CIT</scene></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4wua FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4wua OCA], [https://pdbe.org/4wua PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4wua RCSB], [https://www.ebi.ac.uk/pdbsum/4wua PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4wua ProSAT]</span></td></tr> | ||
| + | </table> | ||
| + | == Function == | ||
| + | [https://www.uniprot.org/uniprot/SRPK1_HUMAN SRPK1_HUMAN] Serine/arginine-rich protein-specific kinase which specifically phosphorylates its substrates at serine residues located in regions rich in arginine/serine dipeptides, known as RS domains and is involved in the phosphorylation of SR splicing factors and the regulation of splicing. Plays a central role in the regulatory network for splicing, controlling the intranuclear distribution of splicing factors in interphase cells and the reorganization of nuclear speckles during mitosis. Can influence additional steps of mRNA maturation, as well as other cellular activities, such as chromatin reorganization in somatic and sperm cells and cell cycle progression. Isoform 2 phosphorylates SFRS2, ZRSR2, LBR and PRM1. Isoform 2 phosphorylates SRSF1 using a directional (C-terminal to N-terminal) and a dual-track mechanism incorporating both processive phosphorylation (in which the kinase stays attached to the substrate after each round of phosphorylation) and distributive phosphorylation steps (in which the kinase and substrate dissociate after each phosphorylation event). The RS domain of SRSF1 binds first to a docking groove in the large lobe of the kinase domain of SRPK1. This induces certain structural changes in SRPK1 and/or RRM2 domain of SRSF1, allowing RRM2 to bind the kinase and initiate phosphorylation. The cycles continue for several phosphorylation steps in a processive manner (steps 1-8) until the last few phosphorylation steps (approximately steps 9-12). During that time, a mechanical stress induces the unfolding of the beta-4 motif in RRM2, which then docks at the docking groove of SRPK1. This also signals RRM2 to begin to dissociate, which facilitates SRSF1 dissociation after phosphorylation is completed. Isoform 2 can mediate hepatitis B virus (HBV) core protein phosphorylation. It plays a negative role in the regulation of HBV replication through a mechanism not involving the phosphorylation of the core protein but by reducing the packaging efficiency of the pregenomic RNA (pgRNA) without affecting the formation of the viral core particles. Isoform 1 and isoform 2 can induce splicing of exon 10 in MAPT/TAU. The ratio of isoform 1/isoform 2 plays a decisive role in determining cell fate in K-562 leukaemic cell line: isoform 2 favors proliferation where as isoform 1 favors differentiation.<ref>PMID:8208298</ref> <ref>PMID:11509566</ref> <ref>PMID:12134018</ref> <ref>PMID:15034300</ref> <ref>PMID:9237760</ref> <ref>PMID:10049757</ref> <ref>PMID:10390541</ref> <ref>PMID:14555757</ref> <ref>PMID:16122776</ref> <ref>PMID:18155240</ref> <ref>PMID:18687337</ref> <ref>PMID:19886675</ref> <ref>PMID:19240134</ref> <ref>PMID:19477182</ref> <ref>PMID:20708644</ref> <ref>PMID:16209947</ref> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Excessive angiogenesis contributes to numerous diseases, including cancer and blinding retinopathy. Antibodies against vascular endothelial growth factor (VEGF) have been approved and are widely used in clinical treatment. Our previous studies using SRPIN340, a small molecule inhibitor of SRPK1 (serine-arginine protein kinase 1), demonstrated that SRPK1 is a potential target for the development of antiangiogenic drugs. In this study, we solved the structure of SRPK1 bound to SRPIN340 by X-ray crystallography. Using pharmacophore docking models followed by in vitro kinase assays, we screened a large-scale chemical library, and thus identified a new inhibitor of SRPK1. This inhibitor, SRPIN803, prevented VEGF production more effectively than SRPIN340 owing to the dual inhibition of SRPK1 and CK2 (casein kinase 2). In a mouse model of age-related macular degeneration, topical administration of eye ointment containing SRPIN803 significantly inhibited choroidal neovascularization, suggesting a clinical potential of SRPIN803 as a topical ointment for ocular neovascularization. Thus SRPIN803 merits further investigation as a novel inhibitor of VEGF. | ||
| - | + | Identification of a Dual Inhibitor of SRPK1 and CK2 That Attenuates Pathological Angiogenesis of Macular Degeneration in Mice.,Morooka S, Hoshina M, Kii I, Okabe T, Kojima H, Inoue N, Okuno Y, Denawa M, Yoshida S, Fukuhara J, Ninomiya K, Ikura T, Furuya T, Nagano T, Noda K, Ishida S, Hosoya T, Ito N, Yoshimura N, Hagiwara M Mol Pharmacol. 2015 Aug;88(2):316-25. doi: 10.1124/mol.114.097345. Epub 2015 May , 20. PMID:25993998<ref>PMID:25993998</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| + | </div> | ||
| + | <div class="pdbe-citations 4wua" style="background-color:#fffaf0;"></div> | ||
| + | == References == | ||
| + | <references/> | ||
| + | __TOC__ | ||
| + | </StructureSection> | ||
| + | [[Category: Homo sapiens]] | ||
| + | [[Category: Large Structures]] | ||
| + | [[Category: Hagiwara M]] | ||
| + | [[Category: Hoshina M]] | ||
| + | [[Category: Hosoya T]] | ||
| + | [[Category: Ikura T]] | ||
| + | [[Category: Ito N]] | ||
Current revision
Crystal structure of human SRPK1 complexed to an inhibitor SRPIN340
| |||||||||||
Categories: Homo sapiens | Large Structures | Hagiwara M | Hoshina M | Hosoya T | Ikura T | Ito N
