|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| + | |
| ==Crystal structure of human hypoxanthine-guanine phosphoribosyltransferase in complex with 6-fluoro-3-hydroxy-2-pyrazinecarboxamide (T-705) ribose-5'-monophosphate== | | ==Crystal structure of human hypoxanthine-guanine phosphoribosyltransferase in complex with 6-fluoro-3-hydroxy-2-pyrazinecarboxamide (T-705) ribose-5'-monophosphate== |
- | <StructureSection load='4kn6' size='340' side='right' caption='[[4kn6]], [[Resolution|resolution]] 2.73Å' scene=''> | + | <StructureSection load='4kn6' size='340' side='right'caption='[[4kn6]], [[Resolution|resolution]] 2.73Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4kn6]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4KN6 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4KN6 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4kn6]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4KN6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4KN6 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=1RP:6-FLUORO-3-OXO-4-(5-O-PHOSPHONO-BETA-D-RIBOFURANOSYL)-3,4-DIHYDROPYRAZINE-2-CARBOXAMIDE'>1RP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.728Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HPRT1, HPRT ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1RP:6-FLUORO-3-OXO-4-(5-O-PHOSPHONO-BETA-D-RIBOFURANOSYL)-3,4-DIHYDROPYRAZINE-2-CARBOXAMIDE'>1RP</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Hypoxanthine_phosphoribosyltransferase Hypoxanthine phosphoribosyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.2.8 2.4.2.8] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4kn6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4kn6 OCA], [https://pdbe.org/4kn6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4kn6 RCSB], [https://www.ebi.ac.uk/pdbsum/4kn6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4kn6 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4kn6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4kn6 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4kn6 RCSB], [http://www.ebi.ac.uk/pdbsum/4kn6 PDBsum]</span></td></tr> | + | |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[http://www.uniprot.org/uniprot/HPRT_HUMAN HPRT_HUMAN]] Defects in HPRT1 are the cause of Lesch-Nyhan syndrome (LNS) [MIM:[http://omim.org/entry/300322 300322]]. LNS is characterized by complete lack of enzymatic activity that results in hyperuricemia, choreoathetosis, mental retardation, and compulsive self-mutilation.<ref>PMID:6853716</ref> <ref>PMID:3384338</ref> <ref>PMID:3265398</ref> <ref>PMID:2910902</ref> <ref>PMID:2347587</ref> <ref>PMID:2358296</ref> <ref>PMID:2246854</ref> <ref>PMID:2071157</ref> <ref>PMID:7627191</ref> <ref>PMID:9452051</ref> Defects in HPRT1 are the cause of gout HPRT-related (GOUT-HPRT) [MIM:[http://omim.org/entry/300323 300323]]; also known as HPRT-related gout or Kelley-Seegmiller syndrome. Gout is characterized by partial enzyme activity and hyperuricemia.<ref>PMID:6853490</ref> <ref>PMID:6572373</ref> <ref>PMID:6706936</ref> <ref>PMID:3358423</ref> <ref>PMID:3198771</ref> <ref>PMID:2909537</ref> [:] | + | [https://www.uniprot.org/uniprot/HPRT_HUMAN HPRT_HUMAN] Defects in HPRT1 are the cause of Lesch-Nyhan syndrome (LNS) [MIM:[https://omim.org/entry/300322 300322]. LNS is characterized by complete lack of enzymatic activity that results in hyperuricemia, choreoathetosis, mental retardation, and compulsive self-mutilation.<ref>PMID:6853716</ref> <ref>PMID:3384338</ref> <ref>PMID:3265398</ref> <ref>PMID:2910902</ref> <ref>PMID:2347587</ref> <ref>PMID:2358296</ref> <ref>PMID:2246854</ref> <ref>PMID:2071157</ref> <ref>PMID:7627191</ref> <ref>PMID:9452051</ref> Defects in HPRT1 are the cause of gout HPRT-related (GOUT-HPRT) [MIM:[https://omim.org/entry/300323 300323]; also known as HPRT-related gout or Kelley-Seegmiller syndrome. Gout is characterized by partial enzyme activity and hyperuricemia.<ref>PMID:6853490</ref> <ref>PMID:6572373</ref> <ref>PMID:6706936</ref> <ref>PMID:3358423</ref> <ref>PMID:3198771</ref> <ref>PMID:2909537</ref> [:] |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/HPRT_HUMAN HPRT_HUMAN]] Converts guanine to guanosine monophosphate, and hypoxanthine to inosine monophosphate. Transfers the 5-phosphoribosyl group from 5-phosphoribosylpyrophosphate onto the purine. Plays a central role in the generation of purine nucleotides through the purine salvage pathway. | + | [https://www.uniprot.org/uniprot/HPRT_HUMAN HPRT_HUMAN] Converts guanine to guanosine monophosphate, and hypoxanthine to inosine monophosphate. Transfers the 5-phosphoribosyl group from 5-phosphoribosylpyrophosphate onto the purine. Plays a central role in the generation of purine nucleotides through the purine salvage pathway. |
- | <div style="background-color:#fffaf0;">
| + | |
- | == Publication Abstract from PubMed ==
| + | |
- | 6-Fluoro-3-hydroxy-2-pyrazinecarboxamide (T-705) is a novel antiviral compound with broad activity against influenza virus and diverse RNA viruses. Its active metabolite, T-705-ribose-5'-triphosphate (T-705-RTP), is recognized by influenza virus RNA polymerase as a substrate competing with GTP, giving inhibition of viral RNA synthesis and lethal virus mutagenesis. Which enzymes perform the activation of T-705 is unknown. We here demonstrate that human hypoxanthine guanine phosphoribosyltransferase (HGPRT) converts T-705 into its ribose-5'-monophosphate (RMP) prior to formation of T-705-RTP. The anti-influenza virus activity of T-705 and T-1105 (3-hydroxy-2-pyrazinamide; the analogue lacking the 6-fluoro atom) was lost in HGPRT-deficient MDCK cells. This HGPRT dependency was confirmed in human HEK293T cells undergoing HGPRT-specific gene knockdown followed by influenza virus ribonucleoprotein reconstitution. Knockdown for adenine phosphoribosyltransferase (APRT) or nicotinamide phosphoribosyltransferase did not change the antiviral activity of T-705 and T-1105. Enzymatic assays showed that T-705 and T-1105 are poor substrates for human HGPRT having K mapp values of 6.4 and 4.1 mM, respectively. Formation of the RMP metabolites by APRT was negligible, and so was the formation of the ribosylated metabolites by human purine nucleoside phosphorylase. Phosphoribosylation and antiviral activity of the 2-pyrazinecarboxamide derivatives was shown to require the presence of the 3-hydroxyl but not the 6-fluoro substituent. The crystal structure of T-705-RMP in complex with human HGPRT showed how this compound binds in the active site. Since conversion of T-705 by HGPRT appears to be inefficient, T-705-RMP prodrugs may be designed to increase the antiviral potency of this new antiviral agent.
| + | |
- | | + | |
- | Role of Human Hypoxanthine Guanine Phosphoribosyltransferase in Activation of the Antiviral Agent T-705 (favipiravir).,Naesens L, Guddat LW, Keough DT, van Kuilenburg AB, Meijer J, Vande Voorde J, Balzarini J Mol Pharmacol. 2013 Aug 1. PMID:23907213<ref>PMID:23907213</ref>
| + | |
- | | + | |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | |
- | </div>
| + | |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Phosphoribosyltransferase|Phosphoribosyltransferase]] | + | *[[Phosphoribosyltransferase 3D structures|Phosphoribosyltransferase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 28: |
Line 20: |
| </StructureSection> | | </StructureSection> |
| [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
- | [[Category: Hypoxanthine phosphoribosyltransferase]] | + | [[Category: Large Structures]] |
- | [[Category: Balzarini, J]] | + | [[Category: Balzarini J]] |
- | [[Category: Guddat, L]] | + | [[Category: Guddat L]] |
- | [[Category: Keough, D]] | + | [[Category: Keough D]] |
- | [[Category: Kuilenburg, A B.P van]]
| + | [[Category: Meijer J]] |
- | [[Category: Meijer, J]] | + | [[Category: Naesens L]] |
- | [[Category: Naesens, L]] | + | [[Category: Vande Voorde J]] |
- | [[Category: Voorde, J Vande]] | + | [[Category: Van Kuilenburg ABP]] |
- | [[Category: 6-oxopurine phosphoribosyltransferase]] | + | |
- | [[Category: Favipiravir]]
| + | |
- | [[Category: Transferase]]
| + | |
| Structural highlights
Disease
HPRT_HUMAN Defects in HPRT1 are the cause of Lesch-Nyhan syndrome (LNS) [MIM:300322. LNS is characterized by complete lack of enzymatic activity that results in hyperuricemia, choreoathetosis, mental retardation, and compulsive self-mutilation.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] Defects in HPRT1 are the cause of gout HPRT-related (GOUT-HPRT) [MIM:300323; also known as HPRT-related gout or Kelley-Seegmiller syndrome. Gout is characterized by partial enzyme activity and hyperuricemia.[11] [12] [13] [14] [15] [16] [:]
Function
HPRT_HUMAN Converts guanine to guanosine monophosphate, and hypoxanthine to inosine monophosphate. Transfers the 5-phosphoribosyl group from 5-phosphoribosylpyrophosphate onto the purine. Plays a central role in the generation of purine nucleotides through the purine salvage pathway.
See Also
References
- ↑ Wilson JM, Kelley WN. Molecular basis of hypoxanthine-guanine phosphoribosyltransferase deficiency in a patient with the Lesch-Nyhan syndrome. J Clin Invest. 1983 May;71(5):1331-5. PMID:6853716
- ↑ Davidson BL, Pashmforoush M, Kelley WN, Palella TD. Genetic basis of hypoxanthine guanine phosphoribosyltransferase deficiency in a patient with the Lesch-Nyhan syndrome (HPRTFlint). Gene. 1988 Mar 31;63(2):331-6. PMID:3384338
- ↑ Davidson BL, Palella TD, Kelley WN. Human hypoxanthine-guanine phosphoribosyltransferase: a single nucleotide substitution in cDNA clones isolated from a patient with Lesch-Nyhan syndrome (HPRTMidland). Gene. 1988 Aug 15;68(1):85-91. PMID:3265398
- ↑ Fujimori S, Davidson BL, Kelley WN, Palella TD. Identification of a single nucleotide change in the hypoxanthine-guanine phosphoribosyltransferase gene (HPRTYale) responsible for Lesch-Nyhan syndrome. J Clin Invest. 1989 Jan;83(1):11-3. PMID:2910902 doi:http://dx.doi.org/10.1172/JCI113846
- ↑ Gibbs RA, Nguyen PN, Edwards A, Civitello AB, Caskey CT. Multiplex DNA deletion detection and exon sequencing of the hypoxanthine phosphoribosyltransferase gene in Lesch-Nyhan families. Genomics. 1990 Jun;7(2):235-44. PMID:2347587
- ↑ Skopek TR, Recio L, Simpson D, Dallaire L, Melancon SB, Ogier H, O'Neill JP, Falta MT, Nicklas JA, Albertini RJ. Molecular analyses of a Lesch-Nyhan syndrome mutation (hprtMontreal) by use of T-lymphocyte cultures. Hum Genet. 1990 Jun;85(1):111-6. PMID:2358296
- ↑ Gordon RB, Sculley DG, Dawson PA, Beacham IR, Emmerson BT. Identification of a single nucleotide substitution in the coding sequence of in vitro amplified cDNA from a patient with partial HPRT deficiency (HPRTBRISBANE). J Inherit Metab Dis. 1990;13(5):692-700. PMID:2246854
- ↑ Tarle SA, Davidson BL, Wu VC, Zidar FJ, Seegmiller JE, Kelley WN, Palella TD. Determination of the mutations responsible for the Lesch-Nyhan syndrome in 17 subjects. Genomics. 1991 Jun;10(2):499-501. PMID:2071157
- ↑ Burgemeister R, Rotzer E, Gutensohn W, Gehrke M, Schiel W. Identification of a new missense mutation in exon 2 of the human hypoxanthine phosphoribosyltransferase gene (HPRTIsar): a further example of clinical heterogeneity in HPRT deficiencies. Hum Mutat. 1995;5(4):341-4. PMID:7627191 doi:http://dx.doi.org/10.1002/humu.1380050413
- ↑ Liu G, Aral B, Zabot MT, Kamoun P, Ceballos-Picot I. The molecular basis of hypoxanthine-guanine phosphoribosyltransferase deficiency in French families; report of two novel mutations. Hum Mutat. 1998;Suppl 1:S88-90. PMID:9452051
- ↑ Wilson JM, Kobayashi R, Fox IH, Kelley WN. Human hypoxanthine-guanine phosphoribosyltransferase. J Biol Chem. 1983 May 25;258(10):6458-60. PMID:6853490
- ↑ Wilson JM, Tarr GE, Kelley WN. Human hypoxanthine (guanine) phosphoribosyltransferase: an amino acid substitution in a mutant form of the enzyme isolated from a patient with gout. Proc Natl Acad Sci U S A. 1983 Feb;80(3):870-3. PMID:6572373
- ↑ Wilson JM, Kelley WN. Human hypoxanthine-guanine phosphoribosyltransferase. Structural alteration in a dysfunctional enzyme variant (HPRTMunich) isolated from a patient with gout. J Biol Chem. 1984 Jan 10;259(1):27-30. PMID:6706936
- ↑ Cariello NF, Scott JK, Kat AG, Thilly WG, Keohavong P. Resolution of a missense mutant in human genomic DNA by denaturing gradient gel electrophoresis and direct sequencing using in vitro DNA amplification: HPRT Munich. Am J Hum Genet. 1988 May;42(5):726-34. PMID:3358423
- ↑ Davidson BL, Chin SJ, Wilson JM, Kelley WN, Palella TD. Hypoxanthine-guanine phosphoribosyltransferase. Genetic evidence for identical mutations in two partially deficient subjects. J Clin Invest. 1988 Dec;82(6):2164-7. PMID:3198771 doi:http://dx.doi.org/10.1172/JCI113839
- ↑ Davidson BL, Pashmforoush M, Kelley WN, Palella TD. Human hypoxanthine-guanine phosphoribosyltransferase deficiency. The molecular defect in a patient with gout (HPRTAshville). J Biol Chem. 1989 Jan 5;264(1):520-5. PMID:2909537
|