|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| + | |
| ==Crystal structure of aminoaldehyde dehydrogenase 1a from Zea mays (ZmAMADH1a)== | | ==Crystal structure of aminoaldehyde dehydrogenase 1a from Zea mays (ZmAMADH1a)== |
- | <StructureSection load='4i8p' size='340' side='right' caption='[[4i8p]], [[Resolution|resolution]] 1.95Å' scene=''> | + | <StructureSection load='4i8p' size='340' side='right'caption='[[4i8p]], [[Resolution|resolution]] 1.95Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4i8p]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Maize Maize]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4I8P OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4I8P FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4i8p]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Zea_mays Zea mays]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4I8P OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4I8P FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.95Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3iwj|3iwj]], [[3iwk|3iwk]], [[4i8q|4i8q]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">AMADH1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=4577 MAIZE])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4i8p FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4i8p OCA], [https://pdbe.org/4i8p PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4i8p RCSB], [https://www.ebi.ac.uk/pdbsum/4i8p PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4i8p ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Aminobutyraldehyde_dehydrogenase Aminobutyraldehyde dehydrogenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.2.1.19 1.2.1.19] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4i8p FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4i8p OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4i8p RCSB], [http://www.ebi.ac.uk/pdbsum/4i8p PDBsum]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/ADH1A_MAIZE ADH1A_MAIZE] Dehydrogenase that catalyzes the oxidation of several aminoaldehydes (PubMed:23408433). Metabolizes and detoxifies aldehyde products of polyamine degradation to non-toxic amino acids (Probable). Catalyzes the oxidation of 4-aminobutanal and 3-aminopropanal to 4-aminobutanoate and beta-alanine, respectively (PubMed:23408433). Catalyzes the oxidation of 4-(trimethylamino)butanal and 4-guanidinobutanal to 4-trimethylammoniobutanoate and 4-guanidinobutanoate, respectively (PubMed:23408433). Catalyzes the oxidation of betaine aldehyde to glycine betaine (PubMed:23408433).<ref>PMID:23408433</ref> Dehydrogenase that catalyzes the oxidation of several aminoaldehydes (PubMed:21740525). Catalyzes the oxidation of betaine aldehyde to glycine betaine (PubMed:21740525). Catalyzes the oxidation of 4-(trimethylamino)butanal to 4-trimethylammoniobutanoate (PubMed:21740525).<ref>PMID:21740525</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 17: |
Line 18: |
| From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| </div> | | </div> |
| + | <div class="pdbe-citations 4i8p" style="background-color:#fffaf0;"></div> |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Aminobutyraldehyde dehydrogenase]] | + | [[Category: Large Structures]] |
- | [[Category: Maize]] | + | [[Category: Zea mays]] |
- | [[Category: Kopecny, D]] | + | [[Category: Kopecny D]] |
- | [[Category: Morera, S]] | + | [[Category: Morera S]] |
- | [[Category: Vigouroux, A]] | + | [[Category: Vigouroux A]] |
- | [[Category: Aldh10 family fold]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
| Structural highlights
4i8p is a 2 chain structure with sequence from Zea mays. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 1.95Å |
Ligands: | , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
ADH1A_MAIZE Dehydrogenase that catalyzes the oxidation of several aminoaldehydes (PubMed:23408433). Metabolizes and detoxifies aldehyde products of polyamine degradation to non-toxic amino acids (Probable). Catalyzes the oxidation of 4-aminobutanal and 3-aminopropanal to 4-aminobutanoate and beta-alanine, respectively (PubMed:23408433). Catalyzes the oxidation of 4-(trimethylamino)butanal and 4-guanidinobutanal to 4-trimethylammoniobutanoate and 4-guanidinobutanoate, respectively (PubMed:23408433). Catalyzes the oxidation of betaine aldehyde to glycine betaine (PubMed:23408433).[1] Dehydrogenase that catalyzes the oxidation of several aminoaldehydes (PubMed:21740525). Catalyzes the oxidation of betaine aldehyde to glycine betaine (PubMed:21740525). Catalyzes the oxidation of 4-(trimethylamino)butanal to 4-trimethylammoniobutanoate (PubMed:21740525).[2]
Publication Abstract from PubMed
Plant ALDH10 family members are aminoaldehyde dehydrogenases (AMADHs), which oxidize omega-aminoaldehydes to the corresponding acids. They have been linked to polyamine catabolism, osmoprotection, secondary metabolism (fragrance), and carnitine biosynthesis. Plants commonly contain two AMADH isoenzymes. We previously studied the substrate specificity of two AMADH isoforms from peas (PsAMADHs). Here, two isoenzymes from tomato (Solanum lycopersicum), SlAMADHs, and three AMADHs from maize (Zea mays), ZmAMADHs, were kinetically investigated to obtain further clues to the catalytic mechanism and the substrate specificity. We also solved the high resolution crystal structures of SlAMADH1 and ZmAMADH1a because these enzymes stand out from the others regarding their activity. From the structural and kinetic analysis, we can state that five residues at positions 163, 288, 289, 444, and 454 (PsAMADHs numbering) can, directly or not, significantly modulate AMADH substrate specificity. In the SlAMADH1 structure, a PEG aldehyde derived from the precipitant forms a thiohemiacetal intermediate, never observed so far. Its absence in the SlAMADH1-E260A structure suggests that Glu-260 can activate the catalytic cysteine as a nucleophile. We show that the five AMADHs studied here are capable of oxidizing 3-dimethylsulfoniopropionaldehyde to the cryo- and osmoprotectant 3-dimethylsulfoniopropionate. For the first time, we also show that 3-acetamidopropionaldehyde, the third aminoaldehyde besides 3-aminopropionaldehyde and 4-aminobutyraldehyde, is generally oxidized by AMADHs, meaning that these enzymes are unique in metabolizing and detoxifying aldehyde products of polyamine degradation to nontoxic amino acids. Finally, gene expression profiles in maize indicate that AMADHs might be important for controlling omega-aminoaldehyde levels during early stages of the seed development.
Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate.,Kopecny D, Koncitikova R, Tylichova M, Vigouroux A, Moskalikova H, Soural M, Sebela M, Morera S J Biol Chem. 2013 Mar 29;288(13):9491-507. doi: 10.1074/jbc.M112.443952. Epub, 2013 Feb 13. PMID:23408433[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Kopecny D, Koncitikova R, Tylichova M, Vigouroux A, Moskalikova H, Soural M, Sebela M, Morera S. Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate. J Biol Chem. 2013 Mar 29;288(13):9491-507. doi: 10.1074/jbc.M112.443952. Epub, 2013 Feb 13. PMID:23408433 doi:http://dx.doi.org/10.1074/jbc.M112.443952
- ↑ Kopecny D, Tylichova M, Snegaroff J, Popelkova H, Sebela M. Carboxylate and aromatic active-site residues are determinants of high-affinity binding of omega-aminoaldehydes to plant aminoaldehyde dehydrogenases. FEBS J. 2011 Sep;278(17):3130-9. doi: 10.1111/j.1742-4658.2011.08239.x. Epub 2011, Aug 8. PMID:21740525 doi:http://dx.doi.org/10.1111/j.1742-4658.2011.08239.x
- ↑ Kopecny D, Koncitikova R, Tylichova M, Vigouroux A, Moskalikova H, Soural M, Sebela M, Morera S. Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate. J Biol Chem. 2013 Mar 29;288(13):9491-507. doi: 10.1074/jbc.M112.443952. Epub, 2013 Feb 13. PMID:23408433 doi:http://dx.doi.org/10.1074/jbc.M112.443952
|