|
|
(3 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| + | |
| ==NMR structure of vasoactive intestinal peptide in DPC Micelle== | | ==NMR structure of vasoactive intestinal peptide in DPC Micelle== |
- | <StructureSection load='2rri' size='340' side='right' caption='[[2rri]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | + | <StructureSection load='2rri' size='340' side='right'caption='[[2rri]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2rri]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2RRI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2RRI FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2rri]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2RRI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2RRI FirstGlance]. <br> |
- | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2rri FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2rri OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2rri RCSB], [http://www.ebi.ac.uk/pdbsum/2rri PDBsum]</span></td></tr> | + | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2rri FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2rri OCA], [https://pdbe.org/2rri PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2rri RCSB], [https://www.ebi.ac.uk/pdbsum/2rri PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2rri ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/VIP_HUMAN VIP_HUMAN]] VIP causes vasodilation, lowers arterial blood pressure, stimulates myocardial contractility, increases glycogenolysis and relaxes the smooth muscle of trachea, stomach and gall bladder.<ref>PMID:15013843</ref> PHM and PHV also cause vasodilation. PHM-27 is a potent agonist of the calcitonin receptor CALCR, with similar efficacy as calcitonin.<ref>PMID:15013843</ref> | + | [https://www.uniprot.org/uniprot/VIP_HUMAN VIP_HUMAN] VIP causes vasodilation, lowers arterial blood pressure, stimulates myocardial contractility, increases glycogenolysis and relaxes the smooth muscle of trachea, stomach and gall bladder.<ref>PMID:15013843</ref> PHM and PHV also cause vasodilation. PHM-27 is a potent agonist of the calcitonin receptor CALCR, with similar efficacy as calcitonin.<ref>PMID:15013843</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 15: |
Line 16: |
| From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| </div> | | </div> |
| + | <div class="pdbe-citations 2rri" style="background-color:#fffaf0;"></div> |
| == References == | | == References == |
| <references/> | | <references/> |
Line 20: |
Line 22: |
| </StructureSection> | | </StructureSection> |
| [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
- | [[Category: Goda, N]] | + | [[Category: Large Structures]] |
- | [[Category: Hiroaki, H]] | + | [[Category: Goda N]] |
- | [[Category: Ikegami, T]] | + | [[Category: Hiroaki H]] |
- | [[Category: Shirakawa, M]] | + | [[Category: Ikegami T]] |
- | [[Category: Tenno, T]] | + | [[Category: Shirakawa M]] |
- | [[Category: Umetsu, Y]] | + | [[Category: Tenno T]] |
- | [[Category: Hormone]]
| + | [[Category: Umetsu Y]] |
| Structural highlights
Function
VIP_HUMAN VIP causes vasodilation, lowers arterial blood pressure, stimulates myocardial contractility, increases glycogenolysis and relaxes the smooth muscle of trachea, stomach and gall bladder.[1] PHM and PHV also cause vasodilation. PHM-27 is a potent agonist of the calcitonin receptor CALCR, with similar efficacy as calcitonin.[2]
Publication Abstract from PubMed
Vasoactive intestinal peptide (VIP) is a 28-amino acid neuropeptide which belongs to a glucagon/secretin superfamily, the ligand of class II G protein-coupled receptors. Knowledge for the conformation of VIP bound to membrane is important because the receptor activation is initiated by membrane binding of VIP. We have previously observed that VIP-G (glycine-extended VIP) is unstructured in solution, as evidenced by the limited NMR chemical shift dispersion. In this study, we determined the three-dimensional structures of VIP-G in two distinct membrane-mimicking environments. Although these are basically similar structures composed of a disordered N-terminal region and a long alpha-helix, micelle-bound VIP-G has a curved alpha-helix. The side chains of residues Phe(6), Tyr(10), Leu(13), and Met(17) found at the concave face form a hydrophobic patch in the micelle-bound state. The structural differences in two distinct membrane-mimicking environments show that the micelle-bound VIP-G localized at the water-micelle boundary with these side chains toward micelle interior. In micelle-bound PACAP-38 (one of the glucagon/secretin superfamily peptide) structure, the identical hydrophobic residues form the micelle-binding interface. This result suggests that these residues play an important role for the membrane binding of VIP and PACAP.
Structural difference of vasoactive intestinal peptide in two distinct membrane-mimicking environments.,Umetsu Y, Tenno T, Goda N, Shirakawa M, Ikegami T, Hiroaki H Biochim Biophys Acta. 2011 May;1814(5):724-30. Epub 2011 Mar 23. PMID:21439408[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Ma JN, Currier EA, Essex A, Feddock M, Spalding TA, Nash NR, Brann MR, Burstein ES. Discovery of novel peptide/receptor interactions: identification of PHM-27 as a potent agonist of the human calcitonin receptor. Biochem Pharmacol. 2004 Apr 1;67(7):1279-84. PMID:15013843 doi:http://dx.doi.org/10.1016/j.bcp.2003.11.008
- ↑ Ma JN, Currier EA, Essex A, Feddock M, Spalding TA, Nash NR, Brann MR, Burstein ES. Discovery of novel peptide/receptor interactions: identification of PHM-27 as a potent agonist of the human calcitonin receptor. Biochem Pharmacol. 2004 Apr 1;67(7):1279-84. PMID:15013843 doi:http://dx.doi.org/10.1016/j.bcp.2003.11.008
- ↑ Umetsu Y, Tenno T, Goda N, Shirakawa M, Ikegami T, Hiroaki H. Structural difference of vasoactive intestinal peptide in two distinct membrane-mimicking environments. Biochim Biophys Acta. 2011 May;1814(5):724-30. Epub 2011 Mar 23. PMID:21439408 doi:10.1016/j.bbapap.2011.03.009
|