|
|
(11 intermediate revisions not shown.) |
Line 1: |
Line 1: |
- | [[Image:2b29.gif|left|200px]] | |
| | | |
- | {{Structure
| + | ==N-terminal domain of the RPA70 subunit of human replication protein A.== |
- | |PDB= 2b29 |SIZE=350|CAPTION= <scene name='initialview01'>2b29</scene>, resolution 1.60Å
| + | <StructureSection load='2b29' size='340' side='right'caption='[[2b29]], [[Resolution|resolution]] 1.60Å' scene=''> |
- | |SITE=
| + | == Structural highlights == |
- | |LIGAND=
| + | <table><tr><td colspan='2'>[[2b29]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2B29 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2B29 FirstGlance]. <br> |
- | |ACTIVITY= | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> |
- | |GENE= RPA1, REPA1, RPA70 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]) | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2b29 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2b29 OCA], [https://pdbe.org/2b29 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2b29 RCSB], [https://www.ebi.ac.uk/pdbsum/2b29 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2b29 ProSAT]</span></td></tr> |
- | }}
| + | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/RFA1_HUMAN RFA1_HUMAN] Plays an essential role in several cellular processes in DNA metabolism including replication, recombination and DNA repair. Binds and subsequently stabilizes single-stranded DNA intermediates and thus prevents complementary DNA from reannealing.<ref>PMID:19116208</ref> <ref>PMID:19996105</ref> Functions as component of the alternative replication protein A complex (aRPA). aRPA binds single-stranded DNA and probably plays a role in DNA repair; it does not support chromosomal DNA replication and cell cycle progression through S-phase. In vitro, aRPA cannot promote efficient priming by DNA polymerase alpha but supports DNA polymerase delta synthesis in the presence of PCNA and replication factor C (RFC), the dual incision/excision reaction of nucleotide excision repair and RAD51-dependent strand exchange.<ref>PMID:19116208</ref> <ref>PMID:19996105</ref> |
| + | == Evolutionary Conservation == |
| + | [[Image:Consurf_key_small.gif|200px|right]] |
| + | Check<jmol> |
| + | <jmolCheckbox> |
| + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/b2/2b29_consurf.spt"</scriptWhenChecked> |
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| + | <text>to colour the structure by Evolutionary Conservation</text> |
| + | </jmolCheckbox> |
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2b29 ConSurf]. |
| + | <div style="clear:both"></div> |
| | | |
- | '''N-terminal domain of the RPA70 subunit of human replication protein A.'''
| + | ==See Also== |
- | | + | *[[Single-stranded DNA-binding protein 3D structures|Single-stranded DNA-binding protein 3D structures]] |
- | | + | == References == |
- | ==Overview== | + | <references/> |
- | One of many protein-protein interactions modulated upon DNA damage is that of the single-stranded DNA-binding protein, replication protein A (RPA), with the p53 tumor suppressor. Here we report the crystal structure of RPA residues 1-120 (RPA70N) bound to the N-terminal transactivation domain of p53 (residues 37-57; p53N) and, by using NMR spectroscopy, characterize two mechanisms by which the RPA/p53 interaction can be modulated. RPA70N forms an oligonucleotide/oligosaccharide-binding fold, similar to that previously observed for the ssDNA-binding domains of RPA. In contrast, the N-terminal p53 transactivation domain is largely disordered in solution, but residues 37-57 fold into two amphipathic helices, H1 and H2, upon binding with RPA70N. The H2 helix of p53 structurally mimics the binding of ssDNA to the oligonucleotide/oligosaccharide-binding fold. NMR experiments confirmed that both ssDNA and an acidic peptide mimicking a phosphorylated form of RPA32N can independently compete the acidic p53N out of the binding site. Taken together, our data suggest a mechanism for DNA damage signaling that can explain a threshold response to DNA damage.
| + | __TOC__ |
- | | + | </StructureSection> |
- | ==About this Structure==
| + | |
- | 2B29 is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2B29 OCA].
| + | |
- | | + | |
- | ==Reference== | + | |
- | Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A., Bochkareva E, Kaustov L, Ayed A, Yi GS, Lu Y, Pineda-Lucena A, Liao JC, Okorokov AL, Milner J, Arrowsmith CH, Bochkarev A, Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15412-7. Epub 2005 Oct 17. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/16234232 16234232]
| + | |
| [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
- | [[Category: Single protein]] | + | [[Category: Large Structures]] |
- | [[Category: Arrowsmith, C H.]] | + | [[Category: Arrowsmith CH]] |
- | [[Category: Ayed, A.]] | + | [[Category: Ayed A]] |
- | [[Category: Bochkarev, A.]] | + | [[Category: Bochkarev A]] |
- | [[Category: Bochkareva, E.]] | + | [[Category: Bochkareva E]] |
- | [[Category: Kaustov, L.]] | + | [[Category: Kaustov L]] |
- | [[Category: Milner, J.]] | + | [[Category: Milner J]] |
- | [[Category: Okorokov, A.]] | + | [[Category: Okorokov A]] |
- | [[Category: replication]]
| + | |
- | | + | |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 15:56:41 2008''
| + | |
| Structural highlights
Function
RFA1_HUMAN Plays an essential role in several cellular processes in DNA metabolism including replication, recombination and DNA repair. Binds and subsequently stabilizes single-stranded DNA intermediates and thus prevents complementary DNA from reannealing.[1] [2] Functions as component of the alternative replication protein A complex (aRPA). aRPA binds single-stranded DNA and probably plays a role in DNA repair; it does not support chromosomal DNA replication and cell cycle progression through S-phase. In vitro, aRPA cannot promote efficient priming by DNA polymerase alpha but supports DNA polymerase delta synthesis in the presence of PCNA and replication factor C (RFC), the dual incision/excision reaction of nucleotide excision repair and RAD51-dependent strand exchange.[3] [4]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
See Also
References
- ↑ Mason AC, Haring SJ, Pryor JM, Staloch CA, Gan TF, Wold MS. An alternative form of replication protein a prevents viral replication in vitro. J Biol Chem. 2009 Feb 20;284(8):5324-31. doi: 10.1074/jbc.M808963200. Epub 2008, Dec 29. PMID:19116208 doi:10.1074/jbc.M808963200
- ↑ Kemp MG, Mason AC, Carreira A, Reardon JT, Haring SJ, Borgstahl GE, Kowalczykowski SC, Sancar A, Wold MS. An alternative form of replication protein a expressed in normal human tissues supports DNA repair. J Biol Chem. 2010 Feb 12;285(7):4788-97. doi: 10.1074/jbc.M109.079418. Epub 2009 , Dec 7. PMID:19996105 doi:10.1074/jbc.M109.079418
- ↑ Mason AC, Haring SJ, Pryor JM, Staloch CA, Gan TF, Wold MS. An alternative form of replication protein a prevents viral replication in vitro. J Biol Chem. 2009 Feb 20;284(8):5324-31. doi: 10.1074/jbc.M808963200. Epub 2008, Dec 29. PMID:19116208 doi:10.1074/jbc.M808963200
- ↑ Kemp MG, Mason AC, Carreira A, Reardon JT, Haring SJ, Borgstahl GE, Kowalczykowski SC, Sancar A, Wold MS. An alternative form of replication protein a expressed in normal human tissues supports DNA repair. J Biol Chem. 2010 Feb 12;285(7):4788-97. doi: 10.1074/jbc.M109.079418. Epub 2009 , Dec 7. PMID:19996105 doi:10.1074/jbc.M109.079418
|