|
|
(3 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| + | |
| ==Hypocrea jecorina Cel6A D221A mutant soaked with 4-Methylumbelliferyl- beta-D-cellobioside== | | ==Hypocrea jecorina Cel6A D221A mutant soaked with 4-Methylumbelliferyl- beta-D-cellobioside== |
- | <StructureSection load='4ax7' size='340' side='right' caption='[[4ax7]], [[Resolution|resolution]] 1.70Å' scene=''> | + | <StructureSection load='4ax7' size='340' side='right'caption='[[4ax7]], [[Resolution|resolution]] 1.70Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4ax7]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Trichoderma_reesei Trichoderma reesei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AX7 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4AX7 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4ax7]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Trichoderma_reesei Trichoderma reesei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AX7 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4AX7 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=4MU:7-HYDROXY-4-METHYL-2H-CHROMEN-2-ONE'>4MU</scene>, <scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1cb2|1cb2]], [[1hgw|1hgw]], [[1hgy|1hgy]], [[1qjw|1qjw]], [[1qk0|1qk0]], [[1qk2|1qk2]], [[3cbh|3cbh]], [[4au0|4au0]], [[4ax6|4ax6]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=4MU:7-HYDROXY-4-METHYL-2H-CHROMEN-2-ONE'>4MU</scene>, <scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=PRD_900005:beta-cellobiose'>PRD_900005</scene>, <scene name='pdbligand=PRD_900011:beta-cellotetraose'>PRD_900011</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cellulose_1,4-beta-cellobiosidase Cellulose 1,4-beta-cellobiosidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.91 3.2.1.91] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ax7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ax7 OCA], [https://pdbe.org/4ax7 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ax7 RCSB], [https://www.ebi.ac.uk/pdbsum/4ax7 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ax7 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ax7 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ax7 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4ax7 RCSB], [http://www.ebi.ac.uk/pdbsum/4ax7 PDBsum]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GUX2_HYPJE GUX2_HYPJE]] The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose. | + | [https://www.uniprot.org/uniprot/GUX2_HYPJE GUX2_HYPJE] The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 18: |
Line 18: |
| From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| </div> | | </div> |
| + | <div class="pdbe-citations 4ax7" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Cellobiohydrolase 3D structures|Cellobiohydrolase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Cellulose 1,4-beta-cellobiosidase]] | + | [[Category: Large Structures]] |
| [[Category: Trichoderma reesei]] | | [[Category: Trichoderma reesei]] |
- | [[Category: Hansson, H]] | + | [[Category: Hansson H]] |
- | [[Category: Ishida, T]] | + | [[Category: Ishida T]] |
- | [[Category: Nerinckx, W]] | + | [[Category: Nerinckx W]] |
- | [[Category: Piens, K]] | + | [[Category: Piens K]] |
- | [[Category: Sandgren, M]] | + | [[Category: Sandgren M]] |
- | [[Category: Stahlberg, J]] | + | [[Category: Stahlberg J]] |
- | [[Category: Wu, M]] | + | [[Category: Wu M]] |
- | [[Category: Cellulase]]
| + | |
- | [[Category: Fluorogenic substrate]]
| + | |
- | [[Category: Gh6]]
| + | |
- | [[Category: Glycoprotein]]
| + | |
- | [[Category: Glycosidase]]
| + | |
- | [[Category: Glycoside hydrolase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Mufg2]]
| + | |
| Structural highlights
4ax7 is a 4 chain structure with sequence from Trichoderma reesei. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 1.7Å |
Ligands: | , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
GUX2_HYPJE The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose.
Publication Abstract from PubMed
Methylumbelliferyl-beta-cellobioside (MUF-G2) is a convenient fluorogenic substrate for certain beta-glycoside hydrolases (GH). However, hydrolysis of the aglycone is poor with GH family 6 enzymes (GH6), despite strong binding. Prediction of the orientation of the aglycone of MUF-G2 in the +1 subsite of Hypocrea jecorina Cel6A by automated docking suggested umbelliferyl modifications at C4 and C6 for improved recognition. Four modified umbelliferyl-beta-cellobiosides [6-chloro-4-methyl- (ClMUF); 6-chloro-4-trifluoromethyl- (ClF3MUF); 4-phenyl- (PhUF); 6-chloro-4-phenyl- (ClPhUF)] were synthesized and tested with GH6, GH7, GH9, GH5 and GH45 cellulases. Indeed the rate of aglycone release by H. jecorina Cel6A was 10-150 times higher than with MUF-G2, although it was still three orders of magnitude lower than with H. jecorina Cel7B. The 4-phenyl substitution drastically reduced the fluorescence intensity of the free aglycone, while ClMUF-G2 could be used for determination of k(cat) and K(M) for H. jecorina Cel6A and Thermobifida fusca Cel6A. Crystal structures of H. jecorina Cel6A D221A mutant soaked with the MUF-, ClMUF- and ClPhUF-beta-cellobioside substrates show that the modifications turned the umbelliferyl group 'upside down', with the glycosidic bond better positioned for protonation than with MUF-G2. DATABASE: Structural data have been submitted to the Protein Data Bank under accession numbers pdb 4AU0, 4AX7, 4AX6 STRUCTURED DIGITAL ABSTRACT: * http://mint.bio.uniroma2.it/mint/search/interaction.do?interactionAc=MINT-7260296 * Cel6A and Cel6A bind by x-ray crystallography (View Interaction: 1, 2).
Rational design, synthesis, evaluation and enzyme-substrate structures of improved fluorogenic substrates for family 6 glycoside hydrolases.,Wu M, Nerinckx W, Piens K, Ishida T, Hansson H, Sandgren M, Stahlberg J FEBS J. 2013 Jan;280(1):184-98. doi: 10.1111/febs.12060. Epub 2012 Dec 7. PMID:23137336[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Wu M, Nerinckx W, Piens K, Ishida T, Hansson H, Sandgren M, Stahlberg J. Rational design, synthesis, evaluation and enzyme-substrate structures of improved fluorogenic substrates for family 6 glycoside hydrolases. FEBS J. 2013 Jan;280(1):184-98. doi: 10.1111/febs.12060. Epub 2012 Dec 7. PMID:23137336 doi:http://dx.doi.org/10.1111/febs.12060
|