2c1o
From Proteopedia
(Difference between revisions)
(13 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:2c1o.gif|left|200px]] | ||
- | + | ==ENAIIHis Fab fragment in the free form== | |
- | + | <StructureSection load='2c1o' size='340' side='right'caption='[[2c1o]], [[Resolution|resolution]] 2.75Å' scene=''> | |
- | + | == Structural highlights == | |
- | + | <table><tr><td colspan='2'>[[2c1o]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Mus_musculus Mus musculus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2C1O OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2C1O FirstGlance]. <br> | |
- | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.75Å</td></tr> | |
- | | | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2c1o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2c1o OCA], [https://pdbe.org/2c1o PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2c1o RCSB], [https://www.ebi.ac.uk/pdbsum/2c1o PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2c1o ProSAT]</span></td></tr> |
- | + | </table> | |
- | + | == Function == | |
- | + | [https://www.uniprot.org/uniprot/Q58EU8_MOUSE Q58EU8_MOUSE] | |
- | + | == Evolutionary Conservation == | |
- | + | [[Image:Consurf_key_small.gif|200px|right]] | |
- | == | + | Check<jmol> |
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/c1/2c1o_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2c1o ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
Enantioselective antibodies can separate the enantiomers of a chiral compound in a highly specific manner. We have recently reported the cloning and applications of a recombinant Fab-fragment, ENA11His, in the enantioseparation of a drug candidate, finrozole, which contains two chiral centers. Here, the crystal structures of this enantioselective antibody Fab-fragment are determined in the absence of the hapten at a resolution of 2.75 A, and in the presence of the hapten at 2.05 A resolution. The conformation of the protein was found to be similar in both free and complex forms. The hapten molecule was tightly bound in a deep cleft between the light and heavy chains of the Fab-fragment. The complex structure also allowed us to describe the molecular basis for enantioselectivity and to deduce the absolute configurations of all the four different stereoisomers (a-d) of finrozole. The ENA11His antibody fragment selectively binds the SR (a) enantiomer from the racemic mixture of a and d-enantiomers, thus allowing separation from the pharmacologically most active RS enantiomer (d). In particular, Asp95 and Asn35 of the H-chain in the ENA11 His antibody seem to provide this specificity through hydrogen bonding. | Enantioselective antibodies can separate the enantiomers of a chiral compound in a highly specific manner. We have recently reported the cloning and applications of a recombinant Fab-fragment, ENA11His, in the enantioseparation of a drug candidate, finrozole, which contains two chiral centers. Here, the crystal structures of this enantioselective antibody Fab-fragment are determined in the absence of the hapten at a resolution of 2.75 A, and in the presence of the hapten at 2.05 A resolution. The conformation of the protein was found to be similar in both free and complex forms. The hapten molecule was tightly bound in a deep cleft between the light and heavy chains of the Fab-fragment. The complex structure also allowed us to describe the molecular basis for enantioselectivity and to deduce the absolute configurations of all the four different stereoisomers (a-d) of finrozole. The ENA11His antibody fragment selectively binds the SR (a) enantiomer from the racemic mixture of a and d-enantiomers, thus allowing separation from the pharmacologically most active RS enantiomer (d). In particular, Asp95 and Asn35 of the H-chain in the ENA11 His antibody seem to provide this specificity through hydrogen bonding. | ||
- | + | Crystal structures of an enantioselective fab-fragment in free and complex forms.,Parkkinen T, Nevanen TK, Koivula A, Rouvinen J J Mol Biol. 2006 Mar 24;357(2):471-80. Epub 2006 Jan 3. PMID:16427081<ref>PMID:16427081</ref> | |
- | + | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
+ | <div class="pdbe-citations 2c1o" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Large Structures]] | ||
[[Category: Mus musculus]] | [[Category: Mus musculus]] | ||
- | + | [[Category: Koivula A]] | |
- | [[Category: Koivula | + | [[Category: Nevanen TK]] |
- | [[Category: Nevanen | + | [[Category: Parkkinen T]] |
- | [[Category: Parkkinen | + | [[Category: Rouvinen J]] |
- | [[Category: Rouvinen | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
ENAIIHis Fab fragment in the free form
|