|
|
| (3 intermediate revisions not shown.) |
| Line 1: |
Line 1: |
| | + | |
| | ==Solution Structure of Internal Fusion Peptide== | | ==Solution Structure of Internal Fusion Peptide== |
| - | <StructureSection load='2ruo' size='340' side='right' caption='[[2ruo]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | + | <StructureSection load='2ruo' size='340' side='right'caption='[[2ruo]]' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[2ruo]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2RUO OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2RUO FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2ruo]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Severe_acute_respiratory_syndrome-related_coronavirus Severe acute respiratory syndrome-related coronavirus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2RUO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2RUO FirstGlance]. <br> |
| - | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2rum|2rum]], [[2run|2run]]</td></tr> | + | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2ruo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ruo OCA], [https://pdbe.org/2ruo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2ruo RCSB], [https://www.ebi.ac.uk/pdbsum/2ruo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2ruo ProSAT]</span></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ruo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ruo OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2ruo RCSB], [http://www.ebi.ac.uk/pdbsum/2ruo PDBsum]</span></td></tr> | + | |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/SPIKE_CVHSA SPIKE_CVHSA]] S1 attaches the virion to the cell membrane by interacting with human ACE2 and CLEC4M/DC-SIGNR, initiating the infection. Binding to the receptor and internalization of the virus into the endosomes of the host cell probably induces conformational changes in the S glycoprotein. Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes. S2 is a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes. | + | [https://www.uniprot.org/uniprot/SPIKE_SARS SPIKE_SARS] May down-regulate host tetherin (BST2) by lysosomal degradation, thereby counteracting its antiviral activity.<ref>PMID:31199522</ref> Attaches the virion to the cell membrane by interacting with host receptor, initiating the infection (By similarity). Binding to human ACE2 and CLEC4M/DC-SIGNR receptors and internalization of the virus into the endosomes of the host cell induces conformational changes in the S glycoprotein. Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membrane fusion within endosomes.[HAMAP-Rule:MF_04099]<ref>PMID:14670965</ref> <ref>PMID:15496474</ref> Mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.[HAMAP-Rule:MF_04099] Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.[HAMAP-Rule:MF_04099]<ref>PMID:19321428</ref> |
| | + | == References == |
| | + | <references/> |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Bhattacharjya, S]] | + | [[Category: Large Structures]] |
| - | [[Category: Mahajan, M]] | + | [[Category: Severe acute respiratory syndrome-related coronavirus]] |
| - | [[Category: Internal fusion peptide]] | + | [[Category: Bhattacharjya S]] |
| - | [[Category: Sars-cov]] | + | [[Category: Mahajan M]] |
| - | [[Category: Viral protein]]
| + | |
| Structural highlights
Function
SPIKE_SARS May down-regulate host tetherin (BST2) by lysosomal degradation, thereby counteracting its antiviral activity.[1] Attaches the virion to the cell membrane by interacting with host receptor, initiating the infection (By similarity). Binding to human ACE2 and CLEC4M/DC-SIGNR receptors and internalization of the virus into the endosomes of the host cell induces conformational changes in the S glycoprotein. Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membrane fusion within endosomes.[HAMAP-Rule:MF_04099][2] [3] Mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.[HAMAP-Rule:MF_04099] Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.[HAMAP-Rule:MF_04099][4]
References
- ↑ Wang SM, Huang KJ, Wang CT. Severe acute respiratory syndrome coronavirus spike protein counteracts BST2-mediated restriction of virus-like particle release. J Med Virol. 2019 Oct;91(10):1743-1750. doi: 10.1002/jmv.25518. Epub 2019 Jul 10. PMID:31199522 doi:http://dx.doi.org/10.1002/jmv.25518
- ↑ Wong SK, Li W, Moore MJ, Choe H, Farzan M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem. 2004 Jan 30;279(5):3197-201. Epub 2003 Dec 11. PMID:14670965 doi:http://dx.doi.org/10.1074/jbc.C300520200
- ↑ Jeffers SA, Tusell SM, Gillim-Ross L, Hemmila EM, Achenbach JE, Babcock GJ, Thomas WD Jr, Thackray LB, Young MD, Mason RJ, Ambrosino DM, Wentworth DE, Demartini JC, Holmes KV. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15748-53. doi:, 10.1073/pnas.0403812101. Epub 2004 Oct 20. PMID:15496474 doi:http://dx.doi.org/10.1073/pnas.0403812101
- ↑ Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5871-6. doi:, 10.1073/pnas.0809524106. Epub 2009 Mar 24. PMID:19321428 doi:http://dx.doi.org/10.1073/pnas.0809524106
|