|
|
| (4 intermediate revisions not shown.) |
| Line 1: |
Line 1: |
| | + | |
| | ==Crystal structure of RNA-guided immune Cascade complex from E.coli== | | ==Crystal structure of RNA-guided immune Cascade complex from E.coli== |
| - | <StructureSection load='4u7u' size='340' side='right' caption='[[4u7u]], [[Resolution|resolution]] 3.00Å' scene=''> | + | <StructureSection load='4u7u' size='340' side='right'caption='[[4u7u]], [[Resolution|resolution]] 3.00Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[4u7u]] is a 24 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4U7U OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4U7U FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4u7u]] is a 24 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12] and [https://en.wikipedia.org/wiki/Escherichia_coli_str._K-12_substr._MG1655 Escherichia coli str. K-12 substr. MG1655]. The January 2015 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Cascade and CRISPR'' by David Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2015_1 10.2210/rcsb_pdb/mom_2015_1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4U7U OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4U7U FirstGlance]. <br> |
| - | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4u7u FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4u7u OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4u7u RCSB], [http://www.ebi.ac.uk/pdbsum/4u7u PDBsum]</span></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.003Å</td></tr> |
| | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4u7u FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4u7u OCA], [https://pdbe.org/4u7u PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4u7u RCSB], [https://www.ebi.ac.uk/pdbsum/4u7u PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4u7u ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/CASC_ECOLI CASC_ECOLI]] CRISPR (clustered regularly interspaced short palindromic repeat), is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain sequences complementary to antecedent mobile elements and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA).<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:21699496</ref> A component of Cascade, which participates in CRISPR interference, the third stage of CRISPR immunity. Cascade binds both crRNA and in a sequence-specific manner negatively supercoiled dsDNA target. This leads to the formation of an R-loop in which the crRNA binds the target DNA, displacing the noncomplementary strand. Cas3 is recruited to Cascade, nicks target DNA and then unwinds and cleaves the target, leading to DNA degradation and invader neutralization. CasCDE alone is also able to form R-loops.<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:21699496</ref> [[http://www.uniprot.org/uniprot/CSE1_ECOLI CSE1_ECOLI]] CRISPR (clustered regularly interspaced short palindromic repeat), is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain sequences complementary to antecedent mobile elements and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA).<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:22621933</ref> <ref>PMID:22521690</ref> A component of Cascade, which participates in CRISPR interference, the third stage of CRISPR immunity. Cascade binds both crRNA and in a sequence-specific manner negatively supercoiled dsDNA target. This leads to the formation of an R-loop in which the crRNA binds the target DNA, displacing the noncomplementary strand. Cas3 is recruited to Cascade, probably via interactions with CasA, nicks target DNA and then unwinds and cleaves the target, leading to DNA degradation and invader neutralization. CasA is not required for formation of Cascade, but probably enhances binding to and subsequent recognition of both target dsDNA and ssDNA.<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:22621933</ref> <ref>PMID:22521690</ref> [[http://www.uniprot.org/uniprot/CAS6_ECOLI CAS6_ECOLI]] CRISPR (clustered regularly interspaced short palindromic repeat), is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain sequences complementary to antecedent mobile elements and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA).<ref>PMID:18703739</ref> <ref>PMID:21219465</ref> <ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:21699496</ref> CasE is required to process the pre-crRNA into single repeat-spacer units, with an 8-nt 5'-repeat DNA tag that may help other proteins recognize the crRNA. This subunit alone will cleave pre-crRNA, as will CasCDE or CasCE; cleavage does not require divalent metals or ATP. CasCDE alone is also able to form R-loops. Partially inhibits the cleavage of Holliday junctions by YgbT (Cas1). Yields a 5'-hydroxy group and a 2',3'-cyclic phosphate terminus.<ref>PMID:18703739</ref> <ref>PMID:21219465</ref> <ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:21699496</ref> A component of Cascade, which participates in CRISPR interference, the third stage of CRISPR immunity. Cascade binds both crRNA and in a sequence-specific manner negatively supercoiled dsDNA target. This leads to the formation of an R-loop in which the crRNA binds the target DNA, displacing the noncomplementary strand. Cas3 is recruited to Cascade, nicks target DNA and then unwinds and cleaves the target, leading to DNA degradation and invader neutralization.<ref>PMID:18703739</ref> <ref>PMID:21219465</ref> <ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:21699496</ref> [[http://www.uniprot.org/uniprot/CSE2_ECOLI CSE2_ECOLI]] CRISPR (clustered regularly interspaced short palindromic repeat), is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain sequences complementary to antecedent mobile elements and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA).<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> A component of Cascade, which participates in CRISPR interference, the third stage of CRISPR immunity. Cascade binds both crRNA and in a sequence-specific manner negatively supercoiled dsDNA target. This leads to the formation of an R-loop in which the crRNA binds the target DNA, displacing the noncomplementary strand. Cas3 is recruited to Cascade, nicks target DNA and then unwinds and cleaves the target, leading to DNA degradation and invader neutralization.<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> [[http://www.uniprot.org/uniprot/CAS5_ECOLI CAS5_ECOLI]] CRISPR (clustered regularly interspaced short palindromic repeat), is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain sequences complementary to antecedent mobile elements and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA).<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:21699496</ref> A component of Cascade, which participates in CRISPR interference, the third stage of CRISPR immunity. Cascade binds both crRNA and in a sequence-specific manner negatively supercoiled dsDNA target. This leads to the formation of an R-loop in which the crRNA binds the target DNA, displacing the noncomplementary strand. Cas3 is recruited to Cascade, nicks target DNA and then unwinds and cleaves the target, leading to DNA degradation and invader neutralization. CasCDE alone is also able to form R-loops.<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:21699496</ref> | + | [https://www.uniprot.org/uniprot/CSE1_ECOLI CSE1_ECOLI] CRISPR (clustered regularly interspaced short palindromic repeat), is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain sequences complementary to antecedent mobile elements and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA).<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:22621933</ref> <ref>PMID:22521690</ref> A component of Cascade, which participates in CRISPR interference, the third stage of CRISPR immunity. Cascade binds both crRNA and in a sequence-specific manner negatively supercoiled dsDNA target. This leads to the formation of an R-loop in which the crRNA binds the target DNA, displacing the noncomplementary strand. Cas3 is recruited to Cascade, probably via interactions with CasA, nicks target DNA and then unwinds and cleaves the target, leading to DNA degradation and invader neutralization. CasA is not required for formation of Cascade, but probably enhances binding to and subsequent recognition of both target dsDNA and ssDNA.<ref>PMID:21255106</ref> <ref>PMID:21460843</ref> <ref>PMID:22621933</ref> <ref>PMID:22521690</ref> |
| - | <div style="background-color:#fffaf0;">
| + | |
| - | == Publication Abstract from PubMed ==
| + | |
| - | Clustered regularly interspaced short palindromic repeats (CRISPR) together with CRISPR-associated (Cas) proteins form the CRISPR/Cas system to defend against foreign nucleic acids of bacterial and archaeal origin. In the I-E subtype CRISPR/Cas system, eleven subunits from five Cas proteins (CasA1B2C6D1E1) assemble along a CRISPR RNA (crRNA) to form the Cascade complex. Here we report on the 3.05 A crystal structure of the 405-kilodalton Escherichia coli Cascade complex that provides molecular details beyond those available from earlier lower-resolution cryo-electron microscopy structures. The bound 61-nucleotide crRNA spans the entire 11-protein subunit-containing complex, where it interacts with all six CasC subunits (named CasC1-6), with its 5' and 3' terminal repeats anchored by CasD and CasE, respectively. The crRNA spacer region is positioned along a continuous groove on the concave surface generated by the aligned CasC1-6 subunits. The five long beta-hairpins that project from individual CasC2-6 subunits extend across the crRNA, with each beta-hairpin inserting into the gap between the last stacked base and its adjacent splayed counterpart, and positioned within the groove of the preceding CasC subunit. Therefore, instead of continuously stacking, the crRNA spacer region is divided into five equal fragments, with each fragment containing five stacked bases flanked by one flipped-out base. Each of those crRNA spacer fragments interacts with CasC in a similar fashion. Furthermore, our structure explains why the seed sequence, with its outwards-directed bases, has a critical role in target DNA recognition. In conclusion, our structure of the Cascade complex provides novel molecular details of protein-protein and protein-RNA alignments and interactions required for generation of a complex mediating RNA-guided immune surveillance.
| + | |
| - | | + | |
| - | Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli.,Zhao H, Sheng G, Wang J, Wang M, Bunkoczi G, Gong W, Wei Z, Wang Y Nature. 2014 Aug 12. doi: 10.1038/nature13733. PMID:25118175<ref>PMID:25118175</ref>
| + | |
| - | | + | |
| - | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | |
| - | </div>
| + | |
| | | | |
| | ==See Also== | | ==See Also== |
| - | *[[Endonuclease|Endonuclease]] | + | *[[CRISPR type I-E (Cascade)|CRISPR type I-E (Cascade)]] |
| | + | *[[CRISPR-Cas|CRISPR-Cas]] |
| | + | *[[Endonuclease 3D structures|Endonuclease 3D structures]] |
| | == References == | | == References == |
| | <references/> | | <references/> |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Bunkoczi, G]] | + | [[Category: Cascade and CRISPR]] |
| - | [[Category: Gong, W]] | + | [[Category: Escherichia coli K-12]] |
| - | [[Category: Sheng, G]] | + | [[Category: Escherichia coli str. K-12 substr. MG1655]] |
| - | [[Category: Wang, J]] | + | [[Category: Large Structures]] |
| - | [[Category: Wang, M]] | + | [[Category: RCSB PDB Molecule of the Month]] |
| - | [[Category: Wang, Y]] | + | [[Category: Bunkoczi G]] |
| - | [[Category: Wei, Z]] | + | [[Category: Gong W]] |
| - | [[Category: Zhao, H]] | + | [[Category: Sheng G]] |
| - | [[Category: Rna binding protein-rna complex]]
| + | [[Category: Wang J]] |
| | + | [[Category: Wang M]] |
| | + | [[Category: Wang Y]] |
| | + | [[Category: Wei Z]] |
| | + | [[Category: Zhao H]] |
| Structural highlights
Function
CSE1_ECOLI CRISPR (clustered regularly interspaced short palindromic repeat), is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain sequences complementary to antecedent mobile elements and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA).[1] [2] [3] [4] A component of Cascade, which participates in CRISPR interference, the third stage of CRISPR immunity. Cascade binds both crRNA and in a sequence-specific manner negatively supercoiled dsDNA target. This leads to the formation of an R-loop in which the crRNA binds the target DNA, displacing the noncomplementary strand. Cas3 is recruited to Cascade, probably via interactions with CasA, nicks target DNA and then unwinds and cleaves the target, leading to DNA degradation and invader neutralization. CasA is not required for formation of Cascade, but probably enhances binding to and subsequent recognition of both target dsDNA and ssDNA.[5] [6] [7] [8]
See Also
References
- ↑ Perez-Rodriguez R, Haitjema C, Huang Q, Nam KH, Bernardis S, Ke A, DeLisa MP. Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli. Mol Microbiol. 2011 Feb;79(3):584-99. doi: 10.1111/j.1365-2958.2010.07482.x. Epub, 2010 Dec 13. PMID:21255106 doi:10.1111/j.1365-2958.2010.07482.x
- ↑ Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul U, Wurm R, Wagner R, Beijer MR, Barendregt A, Zhou K, Snijders AP, Dickman MJ, Doudna JA, Boekema EJ, Heck AJ, van der Oost J, Brouns SJ. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. 2011 May;18(5):529-36. doi: 10.1038/nsmb.2019. Epub 2011 Apr, 3. PMID:21460843 doi:http://dx.doi.org/10.1038/nsmb.2019
- ↑ Mulepati S, Orr A, Bailey S. Crystal structure of the largest subunit of a bacterial RNA-guided immune complex and its role in DNA target binding. J Biol Chem. 2012 May 23. PMID:22621933 doi:10.1074/jbc.C112.379503
- ↑ Sashital DG, Wiedenheft B, Doudna JA. Mechanism of Foreign DNA Selection in a Bacterial Adaptive Immune System. Mol Cell. 2012 Apr 17. PMID:22521690 doi:10.1016/j.molcel.2012.03.020
- ↑ Perez-Rodriguez R, Haitjema C, Huang Q, Nam KH, Bernardis S, Ke A, DeLisa MP. Envelope stress is a trigger of CRISPR RNA-mediated DNA silencing in Escherichia coli. Mol Microbiol. 2011 Feb;79(3):584-99. doi: 10.1111/j.1365-2958.2010.07482.x. Epub, 2010 Dec 13. PMID:21255106 doi:10.1111/j.1365-2958.2010.07482.x
- ↑ Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul U, Wurm R, Wagner R, Beijer MR, Barendregt A, Zhou K, Snijders AP, Dickman MJ, Doudna JA, Boekema EJ, Heck AJ, van der Oost J, Brouns SJ. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. 2011 May;18(5):529-36. doi: 10.1038/nsmb.2019. Epub 2011 Apr, 3. PMID:21460843 doi:http://dx.doi.org/10.1038/nsmb.2019
- ↑ Mulepati S, Orr A, Bailey S. Crystal structure of the largest subunit of a bacterial RNA-guided immune complex and its role in DNA target binding. J Biol Chem. 2012 May 23. PMID:22621933 doi:10.1074/jbc.C112.379503
- ↑ Sashital DG, Wiedenheft B, Doudna JA. Mechanism of Foreign DNA Selection in a Bacterial Adaptive Immune System. Mol Cell. 2012 Apr 17. PMID:22521690 doi:10.1016/j.molcel.2012.03.020
|