|
|
(3 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| + | |
| ==CsoS1A with sulfate ion== | | ==CsoS1A with sulfate ion== |
- | <StructureSection load='2g13' size='340' side='right' caption='[[2g13]], [[Resolution|resolution]] 1.61Å' scene=''> | + | <StructureSection load='2g13' size='340' side='right'caption='[[2g13]], [[Resolution|resolution]] 1.61Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2g13]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Halothiobacillus_neapolitanus Halothiobacillus neapolitanus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2G13 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2G13 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2g13]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Halothiobacillus_neapolitanus Halothiobacillus neapolitanus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2G13 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2G13 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.61Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2ewh|2ewh]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">csoS1A ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=927 Halothiobacillus neapolitanus])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2g13 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2g13 OCA], [https://pdbe.org/2g13 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2g13 RCSB], [https://www.ebi.ac.uk/pdbsum/2g13 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2g13 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2g13 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2g13 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2g13 RCSB], [http://www.ebi.ac.uk/pdbsum/2g13 PDBsum]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/CSOA_THINE CSOA_THINE]] Involved in the formation of the carboxysome, a polyhedral inclusion where RuBisCO is sequestered. | + | [https://www.uniprot.org/uniprot/CSOSA_HALNC CSOSA_HALNC] The major shell protein of the carboxysome, a polyhedral inclusion where RuBisCO (ribulose bisphosphate carboxylase, ccbL-ccbS) is sequestered (PubMed:7934888, PubMed:16535117). Assembles into hexamers which make sheets that form the facets of the polyhedral carboxysome (PubMed:17518518). The shell probably limits the diffusion of CO(2) into and out of the carboxysome (Probable). Molecular modeling shows the central pore of this protein is selectively permeable to anions such as HCO(3) rather than CO(2) or O(2) (Probable). There are estimated to be 2970 CsoS1A/CsoS1C proteins per carboxysome (the proteins differ by only 1 residue) (Ref.5).<ref>PMID:16535117</ref> <ref>PMID:17518518</ref> <ref>PMID:7934888</ref> <ref>PMID:22184212</ref> <ref>PMID:18258595</ref> <ref>PMID:30193460</ref> Unlike beta-carboxysomes, alpha-carboxysomes (Cb) can form without cargo protein. CsoS2 is essential for Cb formation and is also capable of targeting foreign proteins to the Cb. The Cb shell assembles with the aid of CsoS2; CsoS1A, CsoS1B and CsoS1C form the majority of the shell while CsoS4A and CsoS4B form vertices. CsoS1D forms pseudohexamers that probably control metabolite flux into and out of the shell.<ref>PMID:25826651</ref> <ref>PMID:33116131</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Check<jmol> | | Check<jmol> |
| <jmolCheckbox> | | <jmolCheckbox> |
- | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/g1/2g13_consurf.spt"</scriptWhenChecked> | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/g1/2g13_consurf.spt"</scriptWhenChecked> |
| <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
| </jmolCheckbox> | | </jmolCheckbox> |
- | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2g13 ConSurf]. |
| <div style="clear:both"></div> | | <div style="clear:both"></div> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
Line 28: |
Line 28: |
| From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| </div> | | </div> |
| + | <div class="pdbe-citations 2g13" style="background-color:#fffaf0;"></div> |
| == References == | | == References == |
| <references/> | | <references/> |
Line 33: |
Line 34: |
| </StructureSection> | | </StructureSection> |
| [[Category: Halothiobacillus neapolitanus]] | | [[Category: Halothiobacillus neapolitanus]] |
- | [[Category: Cannon, G C]] | + | [[Category: Large Structures]] |
- | [[Category: Kerfeld, C A]] | + | [[Category: Cannon GC]] |
- | [[Category: Sawaya, M R]] | + | [[Category: Kerfeld CA]] |
- | [[Category: Tsai, Y]] | + | [[Category: Sawaya MR]] |
- | [[Category: Williams, E B]] | + | [[Category: Tsai Y]] |
- | [[Category: Yeates, T O]] | + | [[Category: Williams EB]] |
- | [[Category: Bacterial microcompartment domain]]
| + | [[Category: Yeates TO]] |
- | [[Category: Carboxysome]]
| + | |
| Structural highlights
Function
CSOSA_HALNC The major shell protein of the carboxysome, a polyhedral inclusion where RuBisCO (ribulose bisphosphate carboxylase, ccbL-ccbS) is sequestered (PubMed:7934888, PubMed:16535117). Assembles into hexamers which make sheets that form the facets of the polyhedral carboxysome (PubMed:17518518). The shell probably limits the diffusion of CO(2) into and out of the carboxysome (Probable). Molecular modeling shows the central pore of this protein is selectively permeable to anions such as HCO(3) rather than CO(2) or O(2) (Probable). There are estimated to be 2970 CsoS1A/CsoS1C proteins per carboxysome (the proteins differ by only 1 residue) (Ref.5).[1] [2] [3] [4] [5] [6] Unlike beta-carboxysomes, alpha-carboxysomes (Cb) can form without cargo protein. CsoS2 is essential for Cb formation and is also capable of targeting foreign proteins to the Cb. The Cb shell assembles with the aid of CsoS2; CsoS1A, CsoS1B and CsoS1C form the majority of the shell while CsoS4A and CsoS4B form vertices. CsoS1D forms pseudohexamers that probably control metabolite flux into and out of the shell.[7] [8]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The carboxysome is a bacterial organelle that functions to enhance the efficiency of CO2 fixation by encapsulating the enzymes ribulose bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase. The outer shell of the carboxysome is reminiscent of a viral capsid, being constructed from many copies of a few small proteins. Here we describe the structure of the shell protein CsoS1A from the chemoautotrophic bacterium Halothiobacillus neapolitanus. The CsoS1A protein forms hexameric units that pack tightly together to form a molecular layer, which is perforated by narrow pores. Sulfate ions, soaked into crystals of CsoS1A, are observed in the pores of the molecular layer, supporting the idea that the pores could be the conduit for negatively charged metabolites such as bicarbonate, which must cross the shell. The problem of diffusion across a semiporous protein shell is discussed, with the conclusion that the shell is sufficiently porous to allow adequate transport of small molecules. The molecular layer formed by CsoS1A is similar to the recently observed layers formed by cyanobacterial carboxysome shell proteins. This similarity supports the argument that the layers observed represent the natural structure of the facets of the carboxysome shell. Insights into carboxysome function are provided by comparisons of the carboxysome shell to viral capsids, and a comparison of its pores to the pores of transmembrane protein channels.
Structural analysis of CsoS1A and the protein shell of the Halothiobacillus neapolitanus carboxysome.,Tsai Y, Sawaya MR, Cannon GC, Cai F, Williams EB, Heinhorst S, Kerfeld CA, Yeates TO PLoS Biol. 2007 Jun;5(6):e144. PMID:17518518[9]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ English RS, Jin S, Shively JM. Use of Electroporation To Generate a Thiobacillus neapolitanus Carboxysome Mutant. Appl Environ Microbiol. 1995 Sep;61(9):3256-60. PMID:16535117 doi:10.1128/aem.61.9.3256-3260.1995
- ↑ Tsai Y, Sawaya MR, Cannon GC, Cai F, Williams EB, Heinhorst S, Kerfeld CA, Yeates TO. Structural analysis of CsoS1A and the protein shell of the Halothiobacillus neapolitanus carboxysome. PLoS Biol. 2007 Jun;5(6):e144. PMID:17518518 doi:10.1371/journal.pbio.0050144
- ↑ English RS, Lorbach SC, Qin X, Shively JM. Isolation and characterization of a carboxysome shell gene from Thiobacillus neapolitanus. Mol Microbiol. 1994 May;12(4):647-54. PMID:7934888 doi:10.1111/j.1365-2958.1994.tb01052.x
- ↑ Bonacci W, Teng PK, Afonso B, Niederholtmeyer H, Grob P, Silver PA, Savage DF. Modularity of a carbon-fixing protein organelle. Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):478-83. doi:, 10.1073/pnas.1108557109. Epub 2011 Dec 19. PMID:22184212 doi:http://dx.doi.org/10.1073/pnas.1108557109
- ↑ Dou Z, Heinhorst S, Williams EB, Murin CD, Shively JM, Cannon GC. CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2. J Biol Chem. 2008 Apr 18;283(16):10377-84. PMID:18258595 doi:10.1074/jbc.M709285200
- ↑ Mahinthichaichan P, Morris DM, Wang Y, Jensen GJ, Tajkhorshid E. Selective Permeability of Carboxysome Shell Pores to Anionic Molecules. J Phys Chem B. 2018 Oct 4;122(39):9110-9118. PMID:30193460 doi:10.1021/acs.jpcb.8b06822
- ↑ Cai F, Dou Z, Bernstein SL, Leverenz R, Williams EB, Heinhorst S, Shively J, Cannon GC, Kerfeld CA. Advances in Understanding Carboxysome Assembly in Prochlorococcus and Synechococcus Implicate CsoS2 as a Critical Component. Life (Basel). 2015 Mar 27;5(2):1141-71. PMID:25826651 doi:10.3390/life5021141
- ↑ Li T, Jiang Q, Huang J, Aitchison CM, Huang F, Yang M, Dykes GF, He HL, Wang Q, Sprick RS, Cooper AI, Liu LN. Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production. Nat Commun. 2020 Oct 28;11(1):5448. doi: 10.1038/s41467-020-19280-0. PMID:33116131 doi:http://dx.doi.org/10.1038/s41467-020-19280-0
- ↑ Tsai Y, Sawaya MR, Cannon GC, Cai F, Williams EB, Heinhorst S, Kerfeld CA, Yeates TO. Structural analysis of CsoS1A and the protein shell of the Halothiobacillus neapolitanus carboxysome. PLoS Biol. 2007 Jun;5(6):e144. PMID:17518518 doi:10.1371/journal.pbio.0050144
|