3tu4

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (10:12, 1 March 2024) (edit) (undo)
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
 +
==Crystal structure of the Sir3 BAH domain in complex with a nucleosome core particle.==
==Crystal structure of the Sir3 BAH domain in complex with a nucleosome core particle.==
-
<StructureSection load='3tu4' size='340' side='right' caption='[[3tu4]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
+
<StructureSection load='3tu4' size='340' side='right'caption='[[3tu4]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[3tu4]] is a 12 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_s288c Saccharomyces cerevisiae s288c] and [http://en.wikipedia.org/wiki/Xenopus_laevis Xenopus laevis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3TU4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3TU4 FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[3tu4]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_S288C Saccharomyces cerevisiae S288C] and [https://en.wikipedia.org/wiki/Xenopus_laevis Xenopus laevis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3TU4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3TU4 FirstGlance]. <br>
-
</td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">hist1h2aj, LOC494591 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 Xenopus laevis]), SIR3, CMT1, MAR2, STE8, YLR442C, L9753.10 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=559292 Saccharomyces cerevisiae S288c])</td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3&#8491;</td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3tu4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3tu4 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3tu4 RCSB], [http://www.ebi.ac.uk/pdbsum/3tu4 PDBsum]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3tu4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3tu4 OCA], [https://pdbe.org/3tu4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3tu4 RCSB], [https://www.ebi.ac.uk/pdbsum/3tu4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3tu4 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/H2B11_XENLA H2B11_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[http://www.uniprot.org/uniprot/H32_XENLA H32_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[http://www.uniprot.org/uniprot/SIR3_YEAST SIR3_YEAST]] The proteins SIR1 through SIR4 are required for transcriptional repression of the silent mating type loci, HML and HMR. The proteins SIR2 through SIR4 repress mulitple loci by modulating chromatin structure. Involves the compaction of chromatin fiber into a more condensed form. [[http://www.uniprot.org/uniprot/H4_XENLA H4_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
+
[https://www.uniprot.org/uniprot/H32_XENLA H32_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
-
<div style="background-color:#fffaf0;">
+
-
== Publication Abstract from PubMed ==
+
-
Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component.
+
-
 
+
-
Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 A resolution.,Armache KJ, Garlick JD, Canzio D, Narlikar GJ, Kingston RE Science. 2011 Nov 18;334(6058):977-82. PMID:22096199<ref>PMID:22096199</ref>
+
-
 
+
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
+
-
</div>
+
==See Also==
==See Also==
-
*[[Histone|Histone]]
+
*[[Histone 3D structures|Histone 3D structures]]
-
== References ==
+
-
<references/>
+
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Saccharomyces cerevisiae s288c]]
+
[[Category: Large Structures]]
 +
[[Category: Saccharomyces cerevisiae S288C]]
[[Category: Xenopus laevis]]
[[Category: Xenopus laevis]]
-
[[Category: Armache, K J]]
+
[[Category: Armache K-J]]
-
[[Category: Canzio, D]]
+
[[Category: Canzio D]]
-
[[Category: Garlick, J D]]
+
[[Category: Garlick JD]]
-
[[Category: Kingston, R E]]
+
[[Category: Kingston RE]]
-
[[Category: Narlikar, G J]]
+
[[Category: Narlikar GJ]]
-
[[Category: Gene silencing]]
+
-
[[Category: Histone]]
+
-
[[Category: Nucleosome]]
+
-
[[Category: Signaling protein-structural protein-dna complex]]
+

Current revision

Crystal structure of the Sir3 BAH domain in complex with a nucleosome core particle.

PDB ID 3tu4

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools