|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| + | |
| ==Crystal structure of Co2+ HDAC8 complexed with M344== | | ==Crystal structure of Co2+ HDAC8 complexed with M344== |
- | <StructureSection load='3mz3' size='340' side='right' caption='[[3mz3]], [[Resolution|resolution]] 3.20Å' scene=''> | + | <StructureSection load='3mz3' size='340' side='right'caption='[[3mz3]], [[Resolution|resolution]] 3.20Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3mz3]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3MZ3 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3MZ3 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3mz3]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3MZ3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3MZ3 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=B3N:4-(DIMETHYLAMINO)-N-[7-(HYDROXYAMINO)-7-OXOHEPTYL]BENZAMIDE'>B3N</scene>, <scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3.2Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1t67|1t67]], [[3ew8|3ew8]], [[3mz4|3mz4]], [[3mz6|3mz6]], [[3mz7|3mz7]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=B3N:4-(DIMETHYLAMINO)-N-[7-(HYDROXYAMINO)-7-OXOHEPTYL]BENZAMIDE'>B3N</scene>, <scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CDA07, HDAC8, HDACL1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3mz3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3mz3 OCA], [https://pdbe.org/3mz3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3mz3 RCSB], [https://www.ebi.ac.uk/pdbsum/3mz3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3mz3 ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Histone_deacetylase Histone deacetylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.1.98 3.5.1.98] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3mz3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3mz3 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3mz3 RCSB], [http://www.ebi.ac.uk/pdbsum/3mz3 PDBsum]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/HDAC8_HUMAN HDAC8_HUMAN]] Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. May play a role in smooth muscle cell contractility.<ref>PMID:10748112</ref> <ref>PMID:10926844</ref> <ref>PMID:10922473</ref> <ref>PMID:14701748</ref> | + | [https://www.uniprot.org/uniprot/HDAC8_HUMAN HDAC8_HUMAN] Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. May play a role in smooth muscle cell contractility.<ref>PMID:10748112</ref> <ref>PMID:10926844</ref> <ref>PMID:10922473</ref> <ref>PMID:14701748</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Check<jmol> | | Check<jmol> |
| <jmolCheckbox> | | <jmolCheckbox> |
- | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/mz/3mz3_consurf.spt"</scriptWhenChecked> | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/mz/3mz3_consurf.spt"</scriptWhenChecked> |
| <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
| </jmolCheckbox> | | </jmolCheckbox> |
- | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=3mz3 ConSurf]. |
| <div style="clear:both"></div> | | <div style="clear:both"></div> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
Line 29: |
Line 28: |
| From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| </div> | | </div> |
| + | <div class="pdbe-citations 3mz3" style="background-color:#fffaf0;"></div> |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Histone deacetylase|Histone deacetylase]] | + | *[[Histone deacetylase 3D structures|Histone deacetylase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Histone deacetylase]] | |
| [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
- | [[Category: Christianson, D W]] | + | [[Category: Large Structures]] |
- | [[Category: Dowling, D P]] | + | [[Category: Christianson DW]] |
- | [[Category: Fierke, C A]] | + | [[Category: Dowling DP]] |
- | [[Category: Gattis, S G]] | + | [[Category: Fierke CA]] |
- | [[Category: Arginase-fold]] | + | [[Category: Gattis SG]] |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Metalloenzyme]]
| + | |
| Structural highlights
Function
HDAC8_HUMAN Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. May play a role in smooth muscle cell contractility.[1] [2] [3] [4]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The metal-dependent histone deacetylases (HDACs) adopt an alpha/beta protein fold first identified in rat liver arginase. Despite insignificant overall amino acid sequence identity, these enzymes share a strictly conserved metal binding site with divergent metal specificity and stoichiometry. HDAC8, originally thought to be a Zn(2+)-metallohydrolase, exhibits increased activity with Co(2+) and Fe(2+) cofactors based on k(cat)/K(M) (Gantt, S. L., Gattis, S. G., and Fierke, C. A. (2006) Biochemistry 45, 6170-6178). Here, we report the first X-ray crystal structures of metallo-substituted HDAC8, Co(2+)-HDAC8, D101L Co(2+)-HDAC8, D101L Mn(2+)-HDAC8, and D101L Fe(2+)-HDAC8, each complexed with the inhibitor M344. Metal content of protein samples in solution is confirmed by inductively coupled plasma mass spectrometry. For the crystalline enzymes, peaks in Bijvoet difference Fourier maps calculated from X-ray diffraction data collected near the respective elemental absorption edges confirm metal substitution. Additional solution studies confirm incorporation of Cu(2+); Fe(3+) and Ni(2+) do not bind under conditions tested. The metal dependence of the substrate K(M) values and the K(i) values of hydroxamate inhibitors that chelate the active site metal are consistent with substrate-metal coordination in the precatalytic Michaelis complex that enhances catalysis. Additionally, although HDAC8 binds Zn(2+) nearly 10(6)-fold more tightly than Fe(2+), the affinities for both metal ions are comparable to the readily exchangeable metal concentrations estimated in living cells, suggesting that HDAC8 could bind either or both Fe(2+) or Zn(2+) in vivo.
Structures of metal-substituted human histone deacetylase 8 provide mechanistic inferences on biological function .,Dowling DP, Gattis SG, Fierke CA, Christianson DW Biochemistry. 2010 Jun 22;49(24):5048-56. PMID:20545365[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Hu E, Chen Z, Fredrickson T, Zhu Y, Kirkpatrick R, Zhang GF, Johanson K, Sung CM, Liu R, Winkler J. Cloning and characterization of a novel human class I histone deacetylase that functions as a transcription repressor. J Biol Chem. 2000 May 19;275(20):15254-64. PMID:10748112 doi:http://dx.doi.org/10.1074/jbc.M908988199
- ↑ Buggy JJ, Sideris ML, Mak P, Lorimer DD, McIntosh B, Clark JM. Cloning and characterization of a novel human histone deacetylase, HDAC8. Biochem J. 2000 Aug 15;350 Pt 1:199-205. PMID:10926844
- ↑ Van den Wyngaert I, de Vries W, Kremer A, Neefs J, Verhasselt P, Luyten WH, Kass SU. Cloning and characterization of human histone deacetylase 8. FEBS Lett. 2000 Jul 28;478(1-2):77-83. PMID:10922473
- ↑ Lee H, Rezai-Zadeh N, Seto E. Negative regulation of histone deacetylase 8 activity by cyclic AMP-dependent protein kinase A. Mol Cell Biol. 2004 Jan;24(2):765-73. PMID:14701748
- ↑ Dowling DP, Gattis SG, Fierke CA, Christianson DW. Structures of metal-substituted human histone deacetylase 8 provide mechanistic inferences on biological function . Biochemistry. 2010 Jun 22;49(24):5048-56. PMID:20545365 doi:10.1021/bi1005046
|