2i66
From Proteopedia
(Difference between revisions)
(16 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | [[Image:2i66.gif|left|200px]] | ||
- | + | ==Structural Basis for the Mechanistic Understanding Human CD38 Controlled Multiple Catalysis== | |
- | + | <StructureSection load='2i66' size='340' side='right'caption='[[2i66]], [[Resolution|resolution]] 1.70Å' scene=''> | |
- | + | == Structural highlights == | |
- | | | + | <table><tr><td colspan='2'>[[2i66]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2I66 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2I66 FirstGlance]. <br> |
- | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7Å</td></tr> | |
- | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=G1R:[(2R,3R,4R,5R)-5-(2-AMINO-6-OXO-1,6-DIHYDRO-9H-PURIN-9-YL)-3,4-DIHYDROXYTETRAHYDROFURAN-2-YL]METHYL+[(2R,3S,4R,5S)-3,4,5-TRIHYDROXYTETRAHYDROFURAN-2-YL]METHYL+DIHYDROGEN+DIPHOSPHATE'>G1R</scene>, <scene name='pdbligand=G2R:[(2R,3R,4R,5R)-5-(2-AMINO-6-OXO-1,6-DIHYDRO-9H-PURIN-9-YL)-3,4-DIHYDROXYTETRAHYDROFURAN-2-YL]METHYL+[(2R,3S,4S)-3,4-DIHYDROXYTETRAHYDROFURAN-2-YL]METHYL+DIHYDROGEN+DIPHOSPHATE'>G2R</scene></td></tr> | |
- | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2i66 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2i66 OCA], [https://pdbe.org/2i66 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2i66 RCSB], [https://www.ebi.ac.uk/pdbsum/2i66 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2i66 ProSAT]</span></td></tr> | |
- | + | </table> | |
- | + | == Function == | |
- | + | [https://www.uniprot.org/uniprot/CD38_HUMAN CD38_HUMAN] Synthesizes cyclic ADP-ribose, a second messenger for glucose-induced insulin secretion. Also has cADPr hydrolase activity. Also moonlights as a receptor in cells of the immune system. | |
- | + | == Evolutionary Conservation == | |
- | == | + | [[Image:Consurf_key_small.gif|200px|right]] |
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/i6/2i66_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview03.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2i66 ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
The enzymatic cleavage of the nicotinamide-glycosidic bond on nicotinamide adenine dinucleotide (NAD(+)) has been proposed to go through an oxocarbenium ion-like transition state. Because of the instability of the ionic intermediate, there has been no structural report on such a transient reactive species. Human CD38 is an ectoenzyme that can use NAD(+) to synthesize two calcium-mobilizing molecules. By using NAD(+) and a surrogate substrate, NGD(+), we captured and determined crystal structures of the enzyme complexed with an intermediate, a substrate, and a product along the reaction pathway. Our results showed that the intermediate is stabilized by polar interactions with the catalytic residue Glu(226) rather than by a covalent linkage. The polar interactions between Glu(226) and the substrate 2',3'-OH groups are essential for initiating catalysis. Ser(193) was demonstrated to have a regulative role during catalysis and is likely to be involved in intermediate stabilization. In addition, a product inhibition effect by ADP-ribose (through the reorientation of the product) or GDP-ribose (through the formation of a covalently linked GDP-ribose dimer) was observed. These structural data provide insights into the understanding of multiple catalysis and clues for drug design. | The enzymatic cleavage of the nicotinamide-glycosidic bond on nicotinamide adenine dinucleotide (NAD(+)) has been proposed to go through an oxocarbenium ion-like transition state. Because of the instability of the ionic intermediate, there has been no structural report on such a transient reactive species. Human CD38 is an ectoenzyme that can use NAD(+) to synthesize two calcium-mobilizing molecules. By using NAD(+) and a surrogate substrate, NGD(+), we captured and determined crystal structures of the enzyme complexed with an intermediate, a substrate, and a product along the reaction pathway. Our results showed that the intermediate is stabilized by polar interactions with the catalytic residue Glu(226) rather than by a covalent linkage. The polar interactions between Glu(226) and the substrate 2',3'-OH groups are essential for initiating catalysis. Ser(193) was demonstrated to have a regulative role during catalysis and is likely to be involved in intermediate stabilization. In addition, a product inhibition effect by ADP-ribose (through the reorientation of the product) or GDP-ribose (through the formation of a covalently linked GDP-ribose dimer) was observed. These structural data provide insights into the understanding of multiple catalysis and clues for drug design. | ||
- | + | Structural basis for the mechanistic understanding of human CD38-controlled multiple catalysis.,Liu Q, Kriksunov IA, Graeff R, Munshi C, Lee HC, Hao Q J Biol Chem. 2006 Oct 27;281(43):32861-9. Epub 2006 Sep 2. PMID:16951430<ref>PMID:16951430</ref> | |
- | + | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
+ | <div class="pdbe-citations 2i66" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
- | [[Category: | + | [[Category: Large Structures]] |
- | + | [[Category: Graeff R]] | |
- | [[Category: Graeff | + | [[Category: Hao Q]] |
- | [[Category: Hao | + | [[Category: Kriksunov IA]] |
- | [[Category: Kriksunov | + | [[Category: Lee HC]] |
- | [[Category: Lee | + | [[Category: Liu Q]] |
- | [[Category: Liu | + | [[Category: Munshi C]] |
- | [[Category: Munshi | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + |
Current revision
Structural Basis for the Mechanistic Understanding Human CD38 Controlled Multiple Catalysis
|
Categories: Homo sapiens | Large Structures | Graeff R | Hao Q | Kriksunov IA | Lee HC | Liu Q | Munshi C