Tenebrio molitor Antifreeze Protein (TmAFP)

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:03, 26 January 2015) (edit) (undo)
 
(5 intermediate revisions not shown.)
Line 29: Line 29:
The two dimensional arrays of <scene name='61/612804/Thr/3'>Thr</scene> side chain makes a remarkably good match to the repeated spacing between oxygen atoms in the ice lattice on the prism plane, and a reasonable match to the basal plane, This is reason why the activity of ''Tm''AFP ( Thermal hysteresis) is much higher than the activity of AFP from Fish (6 degrees Celcius and 1 degree celcius respectively)<ref>doi:10.1016/S0968-0004(01)02028-X</ref>
The two dimensional arrays of <scene name='61/612804/Thr/3'>Thr</scene> side chain makes a remarkably good match to the repeated spacing between oxygen atoms in the ice lattice on the prism plane, and a reasonable match to the basal plane, This is reason why the activity of ''Tm''AFP ( Thermal hysteresis) is much higher than the activity of AFP from Fish (6 degrees Celcius and 1 degree celcius respectively)<ref>doi:10.1016/S0968-0004(01)02028-X</ref>
 +
 +
'''Lattice matching model for TmAFP binding to ice:'''
'''Lattice matching model for TmAFP binding to ice:'''
a- Prism plane.
a- Prism plane.
Line 38: Line 40:
-
In solution the protein is monomeric and it can bind to ice just in this formation. The protein crystallized as a <scene name='61/612804/Dimer/1'>dimer</scene>, the dimerization occurs along the surface of the beta sheets. The 2 units of the dimer do not directly interact with each other, the contact between them is mediated by highly ordered ranks of water which form hydrogen bonding with Threonine residue. Each water molecule forms two hydrogen bonds to the closer monomer and one to the distant monomer. The distance between two adjacent waters is 4.64±0.20Å the same distance as between Threonine residues 4.64±0.23Å. A good two dimensional match to the ice lattice including all 3 ranks of oxygen atoms (2 from Thr and 1 from water), implying that the ordered water molecules cold act as part of an ice surface and directly participate in the AFP-ice interaction. The regular array formed by this 3 ranks of oxygen atoms can be seen as a small piece of one layer thick ice to be incorporated into a large ice lattice. There is no need to readjust Threonine side chains, because they don’t present steric interference <ref name="two">DOI 10.1038/35018604</ref>. [[Image:406322ac.2.jpg|300px|right]]The dimer binds threw water molecule which mimic the same way how binding to ice. This water is very similar in...
+
In solution the protein is monomeric and it can bind to ice just in this formation. The protein crystallized as a <scene name='61/612804/Dimer/1'>dimer</scene>, the dimerization occurs along the surface of the beta sheets. The 2 units of the dimer do not directly interact with each other, the contact between them is mediated by highly ordered ranks of water which form hydrogen bonding with Threonine residue. Each water molecule forms two hydrogen bonds to the closer monomer and one to the distant monomer. The distance between two adjacent waters is 4.64±0.20Å the same distance as between Threonine residues 4.64±0.23Å. A good two dimensional match to the ice lattice including all 3 ranks of oxygen atoms (2 from Thr and 1 from water), implying that the ordered water molecules cold act as part of an ice surface and directly participate in the AFP-ice interaction. The regular array formed by this 3 ranks of oxygen atoms can be seen as a small piece of one layer thick ice to be incorporated into a large ice lattice. There is no need to readjust Threonine side chains, because they don’t present steric interference <ref name="two">DOI 10.1038/35018604</ref>. The relevance of the dimer is to show the similarity of the binding of monomer to ice and the binding of the dimer. Dimer binds through Water molecules mimic the same way as the monomer binds to ice. [[Image:406322ac.2.jpg|300px|right]]
 +
 
'''Dimer of TmAFP and organization of external water:'''
'''Dimer of TmAFP and organization of external water:'''
Line 45: Line 48:
b- Surface presentation of TmAFP with the closest rank of water molecules.
b- Surface presentation of TmAFP with the closest rank of water molecules.
 +
 +
Line 50: Line 55:
== Function ==
== Function ==
-
The function of the ''Tm''AFP (and other Antifreeze protein) is TH. TH activity is due to an adsorption inhibition mechanism that’s states that AFPs binds to ice surface and allow ice crystal growths only in surface regions between the bound AFP.[[Image:Unnamed.jpg|230px|right]] Growing curvature causes an increase in surface energy, making the transformation of water into ice lass energetically favorable. Because of that the AFPs lower freezing temperature below the melting point. The difference between the melting and freezing point of the ice called thermal hysteresis activity.
+
The function of the ''Tm''AFP (and other Antifreeze protein) is TH. TH activity is due to an adsorption inhibition mechanism that’s states that AFPs binds to ice surface and allow ice crystal growths only in surface regions between the bound AFP.[[Image:Unnamed.jpg|250px|right]] Growing curvature causes an increase in surface energy, making the transformation of water into ice lass energetically favorable. Because of that the AFPs lower freezing temperature below the melting point. The difference between the melting and freezing point of the ice called thermal hysteresis activity.

Current revision

PDB ID 1l1i

Drag the structure with the mouse to rotate

References

  1. Scotter AJ, Marshall CB, Graham LA, Gilbert JA, Garnham CP, Davies PL. The basis for hyperactivity of antifreeze proteins. Cryobiology. 2006 Oct;53(2):229-39. Epub 2006 Aug 2. PMID:16887111 doi:http://dx.doi.org/10.1016/j.cryobiol.2006.06.006
  2. Liu K, Jia Z, Chen G, Tung C, Liu R. Systematic size study of an insect antifreeze protein and its interaction with ice. Biophys J. 2005 Feb;88(2):953-8. PMID:15713600 doi:http://dx.doi.org/10.1529/biophysj.104.051169
  3. 3.0 3.1 Liou YC, Tocilj A, Davies PL, Jia Z. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature. 2000 Jul 20;406(6793):322-4. PMID:10917536 doi:10.1038/35018604
  4. doi: https://dx.doi.org/10.1016/S0968-0004(01)02028-X

Proteopedia Page Contributors and Editors (what is this?)

Lotem Haleva, Yulia Baron, Michal Harel

Personal tools