|
|
(3 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| + | |
| ==crystal structure of HLA B*3508 LPEP157A, HLA mutant Ala157== | | ==crystal structure of HLA B*3508 LPEP157A, HLA mutant Ala157== |
- | <StructureSection load='3vfo' size='340' side='right' caption='[[3vfo]], [[Resolution|resolution]] 1.70Å' scene=''> | + | <StructureSection load='3vfo' size='340' side='right'caption='[[3vfo]], [[Resolution|resolution]] 1.70Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3vfo]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3VFO OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3VFO FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3vfo]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens] and [https://en.wikipedia.org/wiki/Human_herpesvirus_4_strain_B95-8 Human herpesvirus 4 strain B95-8]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3VFO OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3VFO FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1zhk|1zhk]], [[1zhl|1zhl]], [[2ak4|2ak4]], [[3vfm|3vfm]], [[3vfn|3vfn]], [[3vfp|3vfp]], [[3vfr|3vfr]], [[3vfs|3vfs]], [[3vft|3vft]], [[3vfu|3vfu]], [[3vfv|3vfv]], [[3vfw|3vfw]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.7Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HLA-B ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]), B2M, CDABP0092, HDCMA22P ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3vfo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3vfo OCA], [https://pdbe.org/3vfo PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3vfo RCSB], [https://www.ebi.ac.uk/pdbsum/3vfo PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3vfo ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3vfo FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3vfo OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3vfo RCSB], [http://www.ebi.ac.uk/pdbsum/3vfo PDBsum]</span></td></tr> | + | |
| </table> | | </table> |
- | == Disease == | |
- | [[http://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN]] Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:[http://omim.org/entry/241600 241600]]. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.<ref>PMID:16549777</ref> Note=Beta-2-microglobulin may adopt the fibrillar configuration of amyloid in certain pathologic states. The capacity to assemble into amyloid fibrils is concentration dependent. Persistently high beta(2)-microglobulin serum levels lead to amyloidosis in patients on long-term hemodialysis.<ref>PMID:3532124</ref> <ref>PMID:1336137</ref> <ref>PMID:7554280</ref> <ref>PMID:4586824</ref> <ref>PMID:8084451</ref> <ref>PMID:12119416</ref> <ref>PMID:12796775</ref> <ref>PMID:16901902</ref> <ref>PMID:16491088</ref> <ref>PMID:17646174</ref> <ref>PMID:18835253</ref> <ref>PMID:18395224</ref> <ref>PMID:19284997</ref> | |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/C5MK56_HUMAN C5MK56_HUMAN]] Involved in the presentation of foreign antigens to the immune system (By similarity).[SAAS:SAAS003006_004_004364] [[http://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN]] Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system. | + | [https://www.uniprot.org/uniprot/BZLF1_EBVB9 BZLF1_EBVB9] Plays a key role in the switch from latent infection to lytic cycle producing new virions. Acts as a transcription factor, inducing early lytic cycle genes, and as a origin binding protein for genome replication. BZLF1 activates the promoter of another EBV gene (BSLF2+BMLF1).<ref>PMID:2157874</ref> <ref>PMID:1847997</ref> <ref>PMID:8404860</ref> <ref>PMID:17079287</ref> <ref>PMID:19144704</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 19: |
Line 17: |
| From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| </div> | | </div> |
| + | <div class="pdbe-citations 3vfo" style="background-color:#fffaf0;"></div> |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Beta-2 microglobulin|Beta-2 microglobulin]] | + | *[[Beta-2 microglobulin 3D structures|Beta-2 microglobulin 3D structures]] |
| + | *[[MHC 3D structures|MHC 3D structures]] |
| + | *[[MHC I 3D structures|MHC I 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 27: |
Line 28: |
| </StructureSection> | | </StructureSection> |
| [[Category: Homo sapiens]] | | [[Category: Homo sapiens]] |
- | [[Category: Gras, S]] | + | [[Category: Human herpesvirus 4 strain B95-8]] |
- | [[Category: Liu, Y C]]
| + | [[Category: Large Structures]] |
- | [[Category: Rossjohn, J]]
| + | [[Category: Gras S]] |
- | [[Category: Antigen-presenting molecule]]
| + | [[Category: Liu YC]] |
- | [[Category: Epstein barr virus]] | + | [[Category: Rossjohn J]] |
- | [[Category: Hla b*3508]] | + | |
- | [[Category: Immune system]] | + | |
- | [[Category: T cell]] | + | |
- | [[Category: Tcr]]
| + | |
| Structural highlights
Function
BZLF1_EBVB9 Plays a key role in the switch from latent infection to lytic cycle producing new virions. Acts as a transcription factor, inducing early lytic cycle genes, and as a origin binding protein for genome replication. BZLF1 activates the promoter of another EBV gene (BSLF2+BMLF1).[1] [2] [3] [4] [5]
Publication Abstract from PubMed
While the Major Histocompatibility Complex Class I (MHC-I) molecules typically bind short peptide (p) fragments (8-10 amino acids in length), longer, bulged, peptides are often be presented by MHC-I. Such bulged pMHC-I complexes represent challenges for T-cell receptor (TCR) ligation, although the general principles underscoring the interaction between TCRs and bulged pMHC-I complexes are unclear. To address this, we have explored the energetic basis of how an immunodominant TCR (termed SB27) binds to a 13 amino acid viral peptide (LPEPLPQGQLTAY) complexed to Human Leukocyte Antigen (HLA) B*3508. Using the crystal structure of the SB27 TCR-HLA B*3508LPEP complex as a guide, we undertook a comprehensive alanine-scanning mutagenesis approach at the TCR-pMHC-I interface and examined the effect of the mutations by biophysical (affinity measurements) and cellular approaches (tetramer staining). While the structural footprint on the HLA B*3508 was small, the energetic footprint was even smaller in that only two HLA B*3508 residues were critical for the TCR interaction. Instead, the energetic basis of this TCR-pMHC-I interaction was attributed to peptide-mediated interactions in which the complementarity determining region (CDR) 3alpha and germline encoded CDR1beta loops of the SB27 TCR played the principal role. Our findings highlight the peptide-centricity of TCR ligation towards a bulged pMHC-I complex.
The energetic basis underpinning T-cell teceptor tecognition of a super-bulged peptide bound to a major histocompatibility complex class I molecule.,Liu YC, Chen Z, Burrows SR, Purcell AW, McCluskey J, Rossjohn J, Gras S J Biol Chem. 2012 Feb 16. PMID:22343629[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Packham G, Economou A, Rooney CM, Rowe DT, Farrell PJ. Structure and function of the Epstein-Barr virus BZLF1 protein. J Virol. 1990 May;64(5):2110-6. PMID:2157874
- ↑ Kouzarides T, Packham G, Cook A, Farrell PJ. The BZLF1 protein of EBV has a coiled coil dimerisation domain without a heptad leucine repeat but with homology to the C/EBP leucine zipper. Oncogene. 1991 Feb;6(2):195-204. PMID:1847997
- ↑ Schepers A, Pich D, Hammerschmidt W. A transcription factor with homology to the AP-1 family links RNA transcription and DNA replication in the lytic cycle of Epstein-Barr virus. EMBO J. 1993 Oct;12(10):3921-9. PMID:8404860
- ↑ Wen W, Iwakiri D, Yamamoto K, Maruo S, Kanda T, Takada K. Epstein-Barr virus BZLF1 gene, a switch from latency to lytic infection, is expressed as an immediate-early gene after primary infection of B lymphocytes. J Virol. 2007 Jan;81(2):1037-42. Epub 2006 Nov 1. PMID:17079287 doi:10.1128/JVI.01416-06
- ↑ McDonald CM, Petosa C, Farrell PJ. Interaction of Epstein-Barr virus BZLF1 C-terminal tail structure and core zipper is required for DNA replication but not for promoter transactivation. J Virol. 2009 Apr;83(7):3397-401. doi: 10.1128/JVI.02500-08. Epub 2009 Jan 14. PMID:19144704 doi:10.1128/JVI.02500-08
- ↑ Liu YC, Chen Z, Burrows SR, Purcell AW, McCluskey J, Rossjohn J, Gras S. The energetic basis underpinning T-cell teceptor tecognition of a super-bulged peptide bound to a major histocompatibility complex class I molecule. J Biol Chem. 2012 Feb 16. PMID:22343629 doi:10.1074/jbc.M112.344689
|