|
|
| (4 intermediate revisions not shown.) |
| Line 1: |
Line 1: |
| | + | |
| | ==Crystal structure of the first WW domain of human YAP2 isoform== | | ==Crystal structure of the first WW domain of human YAP2 isoform== |
| - | <StructureSection load='4rex' size='340' side='right' caption='[[4rex]], [[Resolution|resolution]] 1.60Å' scene=''> | + | <StructureSection load='4rex' size='340' side='right'caption='[[4rex]], [[Resolution|resolution]] 1.60Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[4rex]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4REX OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4REX FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4rex]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4REX OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4REX FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6Å</td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4rex FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4rex OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4rex RCSB], [http://www.ebi.ac.uk/pdbsum/4rex PDBsum]</span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
| | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4rex FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4rex OCA], [https://pdbe.org/4rex PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4rex RCSB], [https://www.ebi.ac.uk/pdbsum/4rex PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4rex ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/YAP1_HUMAN YAP1_HUMAN]] Transcriptional regulator which can act both as a coactivator and a corepressor and is the critical downstream regulatory target in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Plays a key role to control cell proliferation in response to cell contact. Phosphorylation of YAP1 by LATS1/2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. The presence of TEAD transcription factors are required for it to stimulate gene expression, cell growth, anchorage-independent growth, and epithelial mesenchymal transition (EMT) induction. Isoform 2 and isoform 3 can activate the C-terminal fragment (CTF) of ERBB4 (isoform 3).<ref>PMID:12807903</ref> <ref>PMID:17974916</ref> <ref>PMID:18579750</ref> <ref>PMID:18158288</ref> <ref>PMID:18280240</ref> <ref>PMID:21364637</ref> | + | [https://www.uniprot.org/uniprot/YAP1_HUMAN YAP1_HUMAN] Transcriptional regulator which can act both as a coactivator and a corepressor and is the critical downstream regulatory target in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Plays a key role to control cell proliferation in response to cell contact. Phosphorylation of YAP1 by LATS1/2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. The presence of TEAD transcription factors are required for it to stimulate gene expression, cell growth, anchorage-independent growth, and epithelial mesenchymal transition (EMT) induction. Isoform 2 and isoform 3 can activate the C-terminal fragment (CTF) of ERBB4 (isoform 3).<ref>PMID:12807903</ref> <ref>PMID:17974916</ref> <ref>PMID:18579750</ref> <ref>PMID:18158288</ref> <ref>PMID:18280240</ref> <ref>PMID:21364637</ref> |
| | + | <div style="background-color:#fffaf0;"> |
| | + | == Publication Abstract from PubMed == |
| | + | The WW domains are the smallest modular domains known. The study of the structural basis of their stability is important to understand their physiological role. These domains are intrinsically flexible, which makes them difficult to crystallize. The first WW domain of the human Yes tyrosine kinase Associated Protein (YAP) has been crystallized and its structure has been solved by X-ray diffraction at 1.6A resolution. Crystals belong to the orthorhombic space group P21212 with unit cell parameters a=42.67, b=43.10 and c=21.30. The addition of proline and other small-molecule additives improves drastically the quality of the crystals. The interactions that stabilize this minimal modular domain have been analysed. This crystal structure reveals that, besides the stabilization of the hydrophobic core of the protein by the aromatic cluster formed by Trp177-Phe189-Pro202, some salt-bridges interactions might affect the stability of the domain. |
| | + | |
| | + | Crystal structure of the first WW domain of human YAP2 isoform.,Martinez-Rodriguez S, Bacarizo J, Luque I, Camara-Artigas A J Struct Biol. 2015 Aug 7. pii: S1047-8477(15)30039-3. doi:, 10.1016/j.jsb.2015.08.001. PMID:26256245<ref>PMID:26256245</ref> |
| | + | |
| | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
| | + | </div> |
| | + | <div class="pdbe-citations 4rex" style="background-color:#fffaf0;"></div> |
| | == References == | | == References == |
| | <references/> | | <references/> |
| | __TOC__ | | __TOC__ |
| | </StructureSection> | | </StructureSection> |
| - | [[Category: Camara-Artigas, A]] | + | [[Category: Homo sapiens]] |
| - | [[Category: Antiparallel beta-sheet]] | + | [[Category: Large Structures]] |
| - | [[Category: Hippo signaling pathway]] | + | [[Category: Camara-Artigas A]] |
| - | [[Category: Proline rich motif]]
| + | |
| - | [[Category: Protein binding]]
| + | |
| - | [[Category: Ww domain]]
| + | |
| Structural highlights
Function
YAP1_HUMAN Transcriptional regulator which can act both as a coactivator and a corepressor and is the critical downstream regulatory target in the Hippo signaling pathway that plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Plays a key role to control cell proliferation in response to cell contact. Phosphorylation of YAP1 by LATS1/2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. The presence of TEAD transcription factors are required for it to stimulate gene expression, cell growth, anchorage-independent growth, and epithelial mesenchymal transition (EMT) induction. Isoform 2 and isoform 3 can activate the C-terminal fragment (CTF) of ERBB4 (isoform 3).[1] [2] [3] [4] [5] [6]
Publication Abstract from PubMed
The WW domains are the smallest modular domains known. The study of the structural basis of their stability is important to understand their physiological role. These domains are intrinsically flexible, which makes them difficult to crystallize. The first WW domain of the human Yes tyrosine kinase Associated Protein (YAP) has been crystallized and its structure has been solved by X-ray diffraction at 1.6A resolution. Crystals belong to the orthorhombic space group P21212 with unit cell parameters a=42.67, b=43.10 and c=21.30. The addition of proline and other small-molecule additives improves drastically the quality of the crystals. The interactions that stabilize this minimal modular domain have been analysed. This crystal structure reveals that, besides the stabilization of the hydrophobic core of the protein by the aromatic cluster formed by Trp177-Phe189-Pro202, some salt-bridges interactions might affect the stability of the domain.
Crystal structure of the first WW domain of human YAP2 isoform.,Martinez-Rodriguez S, Bacarizo J, Luque I, Camara-Artigas A J Struct Biol. 2015 Aug 7. pii: S1047-8477(15)30039-3. doi:, 10.1016/j.jsb.2015.08.001. PMID:26256245[7]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Komuro A, Nagai M, Navin NE, Sudol M. WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem. 2003 Aug 29;278(35):33334-41. Epub 2003 Jun 13. PMID:12807903 doi:10.1074/jbc.M305597200
- ↑ Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007 Nov 1;21(21):2747-61. PMID:17974916 doi:10.1101/gad.1602907
- ↑ Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008 Jul 15;22(14):1962-71. Epub 2008 Jun 25. PMID:18579750 doi:10.1101/gad.1664408
- ↑ Hao Y, Chun A, Cheung K, Rashidi B, Yang X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem. 2008 Feb 29;283(9):5496-509. Epub 2007 Dec 24. PMID:18158288 doi:10.1074/jbc.M709037200
- ↑ Levy D, Adamovich Y, Reuven N, Shaul Y. Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol Cell. 2008 Feb 15;29(3):350-61. doi: 10.1016/j.molcel.2007.12.022. PMID:18280240 doi:10.1016/j.molcel.2007.12.022
- ↑ Tomlinson V, Gudmundsdottir K, Luong P, Leung KY, Knebel A, Basu S. JNK phosphorylates Yes-associated protein (YAP) to regulate apoptosis. Cell Death Dis. 2010;1:e29. doi: 10.1038/cddis.2010.7. PMID:21364637 doi:10.1038/cddis.2010.7
- ↑ Martinez-Rodriguez S, Bacarizo J, Luque I, Camara-Artigas A. Crystal structure of the first WW domain of human YAP2 isoform. J Struct Biol. 2015 Aug 7. pii: S1047-8477(15)30039-3. doi:, 10.1016/j.jsb.2015.08.001. PMID:26256245 doi:http://dx.doi.org/10.1016/j.jsb.2015.08.001
|