|
|
(4 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| + | |
| ==CRYSTAL STRUCTURE OF THE RHOA.GDP-RHOGDI COMPLEX== | | ==CRYSTAL STRUCTURE OF THE RHOA.GDP-RHOGDI COMPLEX== |
- | <StructureSection load='1cc0' size='340' side='right' caption='[[1cc0]], [[Resolution|resolution]] 5.00Å' scene=''> | + | <StructureSection load='1cc0' size='340' side='right'caption='[[1cc0]], [[Resolution|resolution]] 5.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1cc0]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CC0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1CC0 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1cc0]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1CC0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1CC0 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 5Å</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1cc0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1cc0 OCA], [http://pdbe.org/1cc0 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1cc0 RCSB], [http://www.ebi.ac.uk/pdbsum/1cc0 PDBsum]</span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1cc0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1cc0 OCA], [https://pdbe.org/1cc0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1cc0 RCSB], [https://www.ebi.ac.uk/pdbsum/1cc0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1cc0 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/RHOA_HUMAN RHOA_HUMAN]] Regulates a signal transduction pathway linking plasma membrane receptors to the assembly of focal adhesions and actin stress fibers. Involved in a microtubule-dependent signal that is required for the myosin contractile ring formation during cell cycle cytokinesis. Plays an essential role in cleavage furrow formation. Required for the apical junction formation of keratinocyte cell-cell adhesion. Serves as a target for the yopT cysteine peptidase from Yersinia pestis, vector of the plague, and Yersinia pseudotuberculosis, which causes gastrointestinal disorders. Stimulates PKN2 kinase activity. May be an activator of PLCE1. Activated by ARHGEF2, which promotes the exchange of GDP for GTP. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex. It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity. In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization.<ref>PMID:8910519</ref> <ref>PMID:9121475</ref> <ref>PMID:12900402</ref> <ref>PMID:16103226</ref> <ref>PMID:16236794</ref> <ref>PMID:19934221</ref> <ref>PMID:20937854</ref> <ref>PMID:20974804</ref> [[http://www.uniprot.org/uniprot/GDIR1_HUMAN GDIR1_HUMAN]] Regulates the GDP/GTP exchange reaction of the Rho proteins by inhibiting the dissociation of GDP from them, and the subsequent binding of GTP to them. In glioma cells, inhibits cell migration and invasion by mediating the signals of SEMA5A and PLXNB3 that lead to inactivation of RAC1 (By similarity). | + | [https://www.uniprot.org/uniprot/RHOA_HUMAN RHOA_HUMAN] Regulates a signal transduction pathway linking plasma membrane receptors to the assembly of focal adhesions and actin stress fibers. Involved in a microtubule-dependent signal that is required for the myosin contractile ring formation during cell cycle cytokinesis. Plays an essential role in cleavage furrow formation. Required for the apical junction formation of keratinocyte cell-cell adhesion. Serves as a target for the yopT cysteine peptidase from Yersinia pestis, vector of the plague, and Yersinia pseudotuberculosis, which causes gastrointestinal disorders. Stimulates PKN2 kinase activity. May be an activator of PLCE1. Activated by ARHGEF2, which promotes the exchange of GDP for GTP. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex. It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity. In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization.<ref>PMID:8910519</ref> <ref>PMID:9121475</ref> <ref>PMID:12900402</ref> <ref>PMID:16103226</ref> <ref>PMID:16236794</ref> <ref>PMID:19934221</ref> <ref>PMID:20937854</ref> <ref>PMID:20974804</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Check<jmol> | | Check<jmol> |
| <jmolCheckbox> | | <jmolCheckbox> |
- | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cc/1cc0_consurf.spt"</scriptWhenChecked> | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/cc/1cc0_consurf.spt"</scriptWhenChecked> |
| <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
| </jmolCheckbox> | | </jmolCheckbox> |
- | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1cc0 ConSurf]. |
| <div style="clear:both"></div> | | <div style="clear:both"></div> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
Line 29: |
Line 31: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[GTP-binding protein|GTP-binding protein]] | + | *[[GTP-binding protein 3D structures|GTP-binding protein 3D structures]] |
| *[[Guanine nucleotide dissociation inhibitor|Guanine nucleotide dissociation inhibitor]] | | *[[Guanine nucleotide dissociation inhibitor|Guanine nucleotide dissociation inhibitor]] |
| + | *[[Rho GTPase 3D structures|Rho GTPase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
- | [[Category: Dauter, Z]] | + | [[Category: Large Structures]] |
- | [[Category: Derewenda, U]] | + | [[Category: Dauter Z]] |
- | [[Category: Derewenda, Z S]] | + | [[Category: Derewenda U]] |
- | [[Category: Garrard, S]] | + | [[Category: Derewenda ZS]] |
- | [[Category: Longenecker, K L]] | + | [[Category: Garrard S]] |
- | [[Category: Nakamoto, R K]] | + | [[Category: Longenecker KL]] |
- | [[Category: Read, P]] | + | [[Category: Nakamoto RK]] |
- | [[Category: Somlyo, A P]] | + | [[Category: Read P]] |
- | [[Category: Somlyo, A V]] | + | [[Category: Somlyo AP]] |
- | [[Category: Walker, L]] | + | [[Category: Somlyo AV]] |
- | [[Category: G-protein]]
| + | [[Category: Walker L]] |
- | [[Category: Rho gtpase]]
| + | |
- | [[Category: Signaling protein]]
| + | |
| Structural highlights
Function
RHOA_HUMAN Regulates a signal transduction pathway linking plasma membrane receptors to the assembly of focal adhesions and actin stress fibers. Involved in a microtubule-dependent signal that is required for the myosin contractile ring formation during cell cycle cytokinesis. Plays an essential role in cleavage furrow formation. Required for the apical junction formation of keratinocyte cell-cell adhesion. Serves as a target for the yopT cysteine peptidase from Yersinia pestis, vector of the plague, and Yersinia pseudotuberculosis, which causes gastrointestinal disorders. Stimulates PKN2 kinase activity. May be an activator of PLCE1. Activated by ARHGEF2, which promotes the exchange of GDP for GTP. Essential for the SPATA13-mediated regulation of cell migration and adhesion assembly and disassembly. The MEMO1-RHOA-DIAPH1 signaling pathway plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex. It controls the localization of APC and CLASP2 to the cell membrane, via the regulation of GSK3B activity. In turn, membrane-bound APC allows the localization of the MACF1 to the cell membrane, which is required for microtubule capture and stabilization.[1] [2] [3] [4] [5] [6] [7] [8]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Like all Rho (Ras homology) GTPases, RhoA functions as a molecular switch in cell signaling, alternating between GTP- and GDP-bound states, with its biologically inactive GDP-bound form maintained as a cytosolic complex with RhoGDI (guanine nucleotide-exchange inhibitor). The crystal structures of RhoA-GDP and of the C-terminal immunoglobulin-like domain of RhoGDI (residues 67-203) are known, but the mechanism by which the two proteins interact is not known. The functional human RhoA-RhoGDI complex has been expressed in yeast and crystallized (P6(5)22, unit-cell parameters a = b = 139, c = 253 A, two complexes in the asymmetric unit). Although diffraction from these crystals extends to 3.5 A and is highly anisotropic, the experimentally phased (MAD plus MIR) electron-density map was adequate to reveal the mutual disposition of the two molecules. The result was validated by molecular-replacement calculations when data were corrected for anisotropy. Furthermore, the N-terminus of RhoGDI (the region involved in inhibition of nucleotide exchange) can be identified in the electron-density map: it is bound to the switch I and switch II regions of RhoA, occluding an epitope which binds Dbl-like nucleotide-exchange factors. The entrance of the hydrophobic pocket of RhoGDI is 25 A from the last residue in the RhoA model, with its C-terminus oriented to accommodate the geranylgeranyl group without conformational change in RhoA.
How RhoGDI binds Rho.,Longenecker K, Read P, Derewenda U, Dauter Z, Liu X, Garrard S, Walker L, Somlyo AV, Nakamoto RK, Somlyo AP, Derewenda ZS Acta Crystallogr D Biol Crystallogr. 1999 Sep;55(Pt 9):1503-15. PMID:10489445[9]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Quilliam LA, Lambert QT, Mickelson-Young LA, Westwick JK, Sparks AB, Kay BK, Jenkins NA, Gilbert DJ, Copeland NG, Der CJ. Isolation of a NCK-associated kinase, PRK2, an SH3-binding protein and potential effector of Rho protein signaling. J Biol Chem. 1996 Nov 15;271(46):28772-6. PMID:8910519
- ↑ Vincent S, Settleman J. The PRK2 kinase is a potential effector target of both Rho and Rac GTPases and regulates actin cytoskeletal organization. Mol Cell Biol. 1997 Apr;17(4):2247-56. PMID:9121475
- ↑ Wing MR, Snyder JT, Sondek J, Harden TK. Direct activation of phospholipase C-epsilon by Rho. J Biol Chem. 2003 Oct 17;278(42):41253-8. Epub 2003 Aug 4. PMID:12900402 doi:http://dx.doi.org/10.1074/jbc.M306904200
- ↑ Yuce O, Piekny A, Glotzer M. An ECT2-centralspindlin complex regulates the localization and function of RhoA. J Cell Biol. 2005 Aug 15;170(4):571-82. PMID:16103226 doi:10.1083/jcb.200501097
- ↑ Kamijo K, Ohara N, Abe M, Uchimura T, Hosoya H, Lee JS, Miki T. Dissecting the role of Rho-mediated signaling in contractile ring formation. Mol Biol Cell. 2006 Jan;17(1):43-55. Epub 2005 Oct 19. PMID:16236794 doi:10.1091/mbc.E05-06-0569
- ↑ Bristow JM, Sellers MH, Majumdar D, Anderson B, Hu L, Webb DJ. The Rho-family GEF Asef2 activates Rac to modulate adhesion and actin dynamics and thereby regulate cell migration. J Cell Sci. 2009 Dec 15;122(Pt 24):4535-46. doi: 10.1242/jcs.053728. Epub 2009, Nov 24. PMID:19934221 doi:10.1242/jcs.053728
- ↑ Zaoui K, Benseddik K, Daou P, Salaun D, Badache A. ErbB2 receptor controls microtubule capture by recruiting ACF7 to the plasma membrane of migrating cells. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18517-22. doi:, 10.1073/pnas.1000975107. Epub 2010 Oct 11. PMID:20937854 doi:10.1073/pnas.1000975107
- ↑ Wallace SW, Magalhaes A, Hall A. The Rho target PRK2 regulates apical junction formation in human bronchial epithelial cells. Mol Cell Biol. 2011 Jan;31(1):81-91. doi: 10.1128/MCB.01001-10. Epub 2010 Oct 25. PMID:20974804 doi:10.1128/MCB.01001-10
- ↑ Longenecker K, Read P, Derewenda U, Dauter Z, Liu X, Garrard S, Walker L, Somlyo AV, Nakamoto RK, Somlyo AP, Derewenda ZS. How RhoGDI binds Rho. Acta Crystallogr D Biol Crystallogr. 1999 Sep;55(Pt 9):1503-15. PMID:10489445
|