|
|
(4 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| + | |
| ==3-D SOLUTION STRUCTURE OF REDUCED APO-S100B FROM RAT, NMR, 20 STRUCTURES== | | ==3-D SOLUTION STRUCTURE OF REDUCED APO-S100B FROM RAT, NMR, 20 STRUCTURES== |
- | <StructureSection load='1sym' size='340' side='right' caption='[[1sym]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | + | <StructureSection load='1sym' size='340' side='right'caption='[[1sym]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1sym]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SYM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1SYM FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1sym]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SYM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1SYM FirstGlance]. <br> |
- | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">S100BETA FROM RATTUS NORVEGICU ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Buffalo rat])</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1sym FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1sym OCA], [http://pdbe.org/1sym PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1sym RCSB], [http://www.ebi.ac.uk/pdbsum/1sym PDBsum]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1sym FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1sym OCA], [https://pdbe.org/1sym PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1sym RCSB], [https://www.ebi.ac.uk/pdbsum/1sym PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1sym ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/S100B_RAT S100B_RAT]] Weakly binds calcium but binds zinc very tightly-distinct binding sites with different affinities exist for both ions on each monomer. Physiological concentrations of potassium ion antagonize the binding of both divalent cations, especially affecting high-affinity calcium-binding sites. Binds to and initiates the activation of STK38 by releasing autoinhibitory intramolecular interactions within the kinase. Interaction with AGER after myocardial infarction may play a role in myocyte apoptosis by activating ERK1/2 and p53/TP53 signaling. Could assist ATAD3A cytoplasmic processing, preventing aggregation and favoring mitochondrial localization.<ref>PMID:19910580</ref> <ref>PMID:20351179</ref> | + | [https://www.uniprot.org/uniprot/S100B_RAT S100B_RAT] Weakly binds calcium but binds zinc very tightly-distinct binding sites with different affinities exist for both ions on each monomer. Physiological concentrations of potassium ion antagonize the binding of both divalent cations, especially affecting high-affinity calcium-binding sites. Binds to and initiates the activation of STK38 by releasing autoinhibitory intramolecular interactions within the kinase. Interaction with AGER after myocardial infarction may play a role in myocyte apoptosis by activating ERK1/2 and p53/TP53 signaling. Could assist ATAD3A cytoplasmic processing, preventing aggregation and favoring mitochondrial localization.<ref>PMID:19910580</ref> <ref>PMID:20351179</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Check<jmol> | | Check<jmol> |
| <jmolCheckbox> | | <jmolCheckbox> |
- | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/sy/1sym_consurf.spt"</scriptWhenChecked> | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/sy/1sym_consurf.spt"</scriptWhenChecked> |
| <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
| </jmolCheckbox> | | </jmolCheckbox> |
- | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1sym ConSurf]. |
| <div style="clear:both"></div> | | <div style="clear:both"></div> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
Line 29: |
Line 30: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[S100 protein|S100 protein]] | + | *[[S100 proteins 3D structures|S100 proteins 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Buffalo rat]] | + | [[Category: Large Structures]] |
- | [[Category: Drohat, A C]] | + | [[Category: Rattus norvegicus]] |
- | [[Category: Weber, D J]] | + | [[Category: Drohat AC]] |
- | [[Category: Calcium-binding protein]] | + | [[Category: Weber DJ]] |
- | [[Category: Metal-binding]]
| + | |
| Structural highlights
Function
S100B_RAT Weakly binds calcium but binds zinc very tightly-distinct binding sites with different affinities exist for both ions on each monomer. Physiological concentrations of potassium ion antagonize the binding of both divalent cations, especially affecting high-affinity calcium-binding sites. Binds to and initiates the activation of STK38 by releasing autoinhibitory intramolecular interactions within the kinase. Interaction with AGER after myocardial infarction may play a role in myocyte apoptosis by activating ERK1/2 and p53/TP53 signaling. Could assist ATAD3A cytoplasmic processing, preventing aggregation and favoring mitochondrial localization.[1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
S100B(beta beta), a member of the S100 protein family, is a Ca(2+)-binding protein with noncovalent interactions at its dimer interface. Each apo-S100 beta subunit (91 residues) has four alpha-helices and a small antiparallel beta-sheet, consistent with two predicted helix-loop-helix Ca(2+)-binding domains known as EF-hands [Amburgey et al. (1995) J. Biomol. NMR 6, 171-179]. The three-dimensional solution structure of apo-S100B(beta beta) from rat has been determined using 2672 distance (14.7 per residue) and 88 dihedral angle restraints derived from multidimensional nuclear magnetic resonance spectroscopy. Apo-S100B (beta beta) is found to be globular and compact with an extensive hydrophobic core and a highly charged surface, consistent with its high solubility. At the symmetric dimer interface, 172 intermolecular nuclear Overhauser effect correlations (NOEs) define the antiparallel alignment of helix I with I' and of helix IV with IV'. The perpendicular association of these pairs of antiparallel helices forms an X-type four-helical bundle at the dimer interface. Whereas, the four helices within each apo-S100 beta subunit adopt a unicornate-type four-helix bundle, with helix I protruding from the parallel bundle of helices II, III, and IV. Accordingly, the orientation of helix III relative to helices I, II, and IV in each subunit differs significantly from that known for other Ca(2+)-binding proteins. Indeed, the interhelical angle (omega) observed in the C-terminal EF-hand of apo-S100 beta is -142 degrees, whereas omega ranges from 118 degrees to 145 degrees in the apo state and from 84 degrees to 128 degrees in the Ca(2+)-bound state for the EF-hands of calbindin D9k, calcyclin, and calmodulin. Thus, a significant conformational change in the C-terminal EF-hand would be required for it to adopt a structure typical of the Ca(2+)-bound state, which could readily explain the dramatic spectral effects observed upon the addition of Ca2+ to apo-S100B(beta beta).
Solution structure of rat apo-S100B(beta beta) as determined by NMR spectroscopy.,Drohat AC, Amburgey JC, Abildgaard F, Starich MR, Baldisseri D, Weber DJ Biochemistry. 1996 Sep 10;35(36):11577-88. PMID:8794737[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Tsoporis JN, Izhar S, Leong-Poi H, Desjardins JF, Huttunen HJ, Parker TG. S100B interaction with the receptor for advanced glycation end products (RAGE): a novel receptor-mediated mechanism for myocyte apoptosis postinfarction. Circ Res. 2010 Jan 8;106(1):93-101. doi: 10.1161/CIRCRESAHA.109.195834. Epub 2009, Nov 12. PMID:19910580 doi:10.1161/CIRCRESAHA.109.195834
- ↑ Gilquin B, Cannon BR, Hubstenberger A, Moulouel B, Falk E, Merle N, Assard N, Kieffer S, Rousseau D, Wilder PT, Weber DJ, Baudier J. The calcium-dependent interaction between S100B and the mitochondrial AAA ATPase ATAD3A and the role of this complex in the cytoplasmic processing of ATAD3A. Mol Cell Biol. 2010 Jun;30(11):2724-36. doi: 10.1128/MCB.01468-09. Epub 2010 Mar , 29. PMID:20351179 doi:10.1128/MCB.01468-09
- ↑ Drohat AC, Amburgey JC, Abildgaard F, Starich MR, Baldisseri D, Weber DJ. Solution structure of rat apo-S100B(beta beta) as determined by NMR spectroscopy. Biochemistry. 1996 Sep 10;35(36):11577-88. PMID:8794737 doi:10.1021/bi9612226
|