User:Alejandro Porto/Sandbox 3

From Proteopedia

< User:Alejandro Porto(Difference between revisions)
Jump to: navigation, search
Current revision (11:45, 20 March 2016) (edit) (undo)
 
(53 intermediate revisions not shown.)
Line 1: Line 1:
-
===Glúcidos===
+
=Protein structure=
 +
<StructureSection load='' size='800' side='right' caption='' scene='60/603296/Primaria/2'>
-
----
+
'''Estructura primaria'''.- en esta <scene name='60/603296/Primaria/2'>vista inicial</scene> podemos observar un tramo corto de una cadena polipeptídica con el objeto de analizar aspectos de su ''estructura primaria''. Los átomos que conforman el ''esqueleto'' de la cadena están dispuestos en zig-zag como dicta la geometría de los orbitales de enlace de cada uno de ellos. Alternándose a uno y otro lado de este esqueleto se disponen los grupos R o cadenas laterales de los distintos residuos de aminoácidos. Los grupos R se representan aquí mediante distintas esferas de mayor tamaño que el resto de los átomos para resaltar el hecho de que cada uno de ellos es en realidad un grupo de átomos enlazados de un modo característico.
-
<Structure load='Insert PDB code or filename here' size='800' frame='true' align='right' caption='Glúcidos' scene='60/603296/Gliceraldehido/1' />
+
-
==Monosacáridos==
+
Nos aproximamos ahora a una zona de la cadena polipeptídica para analizar la estructura del <scene name='60/603296/Primaria3/1'>enlace peptídico</scene> existente entre dos residuos de aminoácidos. Debido al fenómeno de la resonancia, el enlace peptídico, que une el átomo de carbono carboxílico de un resido de aminoácido con el de nitrógeno del grupo amino del siguiente posee un carácter parcial de doble enlace, que impide la rotación de los sustituyentes que se encuentran a uno y otro lado del mismo. Ello hace que los seis átomos enmarcados en el <scene name='60/603296/Primaria3/7'>rectángulo</scene> señalado en el modelo adjunto se encuentren siempre en el mismo plano rígido, como podemos comprobar al <scene name='60/603296/Primaria3/6'>activar el giro</scene> de la estructura.
-
Lo monosacáridos más simples son las aldotriosas como el '''gliceraldehido'''. En la ventana de la derecha se puede apreciar la estructura molecular del <scene name='60/603296/Gliceraldehido/1'>D-gliceraldehido</scene>, una de las dos formas estereoisómeras que presentan las aldotriosas. La otra es el <scene name='60/603296/Gliceraldehido/2'>L-gliceraldehido</scene>. Estas dos formas estereoisómeras son además enantiómeros, es decir, <scene name='60/603296/Gliceraldehido/3'>imágenes especulares</scene> una de la otra.
+
El esqueleto de la cadena polipeptídica es una sucesión monótona en la que se repite la siguiente secuencia: <scene name='60/603296/Primaria3/8'>carbono alfa</scene>, <scene name='60/603296/Primaria3/9'>carbono del grupo carboxilo</scene>,
-
El monosacárido más abundante en la naturaleza es la <scene name='60/603296/Glucosa/1'>D-glucosa</scene>, que aquí podemos apreciar en forma de cadena abierta. Mediante rotaciones en los enlaces simples de su esqueleto carbonado <scene name='60/603296/Glucopiranosa/10'>los carbonos C1 y C5</scene> de la '''D-glucosa''' pueden aproximarse de manera que los respectivos grupos funcionales carbonilo (C1) e hidroxilo (C5) reaccionan entre sí dando lugar a un hemiacetal intramolecular denominado <scene name='60/603296/Glucopiranosa/13'>anillo de piranosa</scene>. La forma cíclica de la D-glucosa que resulta de esta reacción intramolecular presenta a su vez dos formas estereoisómeras (''formas anoméricas'') dependiendo de la configuración de los sustituyentes del C1, que como consecuencia de la ciclación, se ha convertido en un nuevo carbono asimétrico. Aquí podemos apreciar la forma denominada <scene name='60/603296/Glucopiranosa/9'>α-D-glucopiranosa</scene>.
+
<scene name='60/603296/Primaria3/11'>nitrógeno del grupo amino</scene>. Si tenemos en cuenta la falta de libertad de giro asociada al enlace peptídico, podemos concebir la cadena polipeptídica como una <scene name='60/603296/Primaria3/12'>sucesión de planos rígidos</scene> que sí pueden rotar unos con respecto a otros.
-
Otros monosacáridos también pueden dar lugar a formas cíclicas como es el caso de la '''fructosa'''. La forma anomérica que aquí se representa es la <scene name='60/603296/Fructofuranosa/1'>β-D-fructofuranosa</scene>.
+
-
Además de los monosacáridos propiamente dichos, existen multitud de ''derivados de monosacáridos'', que resultan de modificaciones químicas de alguno de los grupos funcionales del monosacárido correspondiente. Entre ellos están los ''aminoazúcares'', como la <scene name='60/603296/Glucosamina/1'>D-glucosamina</scene>
+
-
==Disacáridos==
+
'''Estructura secundaria'''.- Existen dos tipos principales de estructura secundaria presentes en la mayoría de las proteínas:
 +
:<scene name='60/603296/Secundaria/4'>Hélice alfa</scene>.- Se trata de una estructura helicoidal con un paso de rosca de 0,56 nm. Aquí podemos verla en una <scene name='60/603296/Secundaria/5'>visión polar</scene>. Para apreciar con mayor claridad la estructura helicoidal procedemos ahora a <scene name='60/603296/Secundaria/7'>ocultar hidrógenos</scene>. El esqueleto de la cadena polipeptídica, arrollado en hélice, ocupa la parte central de la estructura, mientras que las cadenas laterales de los distintos residuos de aminoácidos se proyectan hacia el exterior de la estructura, lo que se aprecia mejor si procedemos a <scene name='60/603296/Secundaria/8'>ocultar cadenas laterales</scene>. Volvamos ahora a una <scene name='60/603296/Secundaria/10'>vista lateral</scene>. Un <scene name='60/603296/Secundaria/11'>modelo de cintas</scene> resalta el arrollamiento helicoidal de la cadena. Utilizando de nuevo un <scene name='60/603296/Secundaria/12'>bolas y varillas</scene> volvemos a hacer visibles las <scene name='60/603296/Secundaria/13'>cadenas laterales</scene>, que ahora distinguimos por medio de una gradación de colores. La estructura de la ''hélice alfa'' resulta estabilizada por numerosos <scene name='60/603296/Secundaria/14'>puentes de hidrógeno</scene>, en los que participan todos los grupos peptídicos de la cadena polipeptídica, como podemos apreciar aquí con mayor <scene name='60/603296/Secundaria/15'>detalle</scene>.
 +
:Lo que determina el que una cadena polipeptídica adopte una estructura secundaria en hélice alga o bien otro tipo de estructura secundaria es su secuencia de aminoácidos. Por ejemplo la naturaleza y posición en la cadena de los <scene name='60/603296/Secundaria/20'>residuos con carga eléctrica</scene> es determinante: si dos residuos con carga del mismo signo están situados muy próximos en la cadena, el plegamiento en hélice los obligará a acercarse todavía más, de manera que las interacciones repulsivas entre estas cargas destabilizarán la estructura. Por el contrario, si las cargas eléctricas son del mismo signo, la interacción atractiva entre ambas la estabilizará. Por otra parte,<scene name='60/603296/Secundaria/21'>tamaño de las cadenas laterales</scene> de los distintos residuos y sus posiciones relativas también tendrán una influencia decisiva: grupos R muy voluminosos y próximos entre sí provocarán impedimentos estéricos que dificultarán el plegamiento, mientras que la alternancia entre grupos R grandes y pequeños en las posiciones adecuadas lo facilitarán.
 +
:'''<scene name='60/603296/Secundaria2/1'>Lámina beta</scene>'''.- La cadena polipeptídica adopta una disposición en zig-zag, que apreciaremos mejor si <scene name='60/603296/Secundaria2/2'>ocultamos los hidrógenos</scene> y si hacemos lo propio con <scene name='60/603296/Secundaria2/3'>las cadenas laterales</scene>. Obsérvese que una misma cadena polipeptídica puede presentar tramos rectilíneos con estructura secundaria en ''lámina beta'' separados por curvaturas con estructura en ''codo beta''. A continuación vamos a restituir las <scene name='60/603296/Secundaria2/4'>cadenas laterales</scene> a su lugar y a visualizar los <scene name='60/603296/Secundaria2/5'>puentes de hidrógeno</scene> entre distintos tramos de la cadena que estabilizan la estructura. Por último veamos la misma cadena polipeptídica representada mediante un <scene name='60/603296/Secundaria2/6'>modelo de cintas</scene>.
-
Los monosacáridos se unen mediante '''enlaces glucosídicos''' para dar lugar a los distintos tipos de '''ósidos'''. Para analizar la formación de este tipo de enlace, partamos de <scene name='60/603296/Glucosidico1/1'>2 moléculas de glucosa</scene>. Un átomo de hidrógeno perteneciente al grupo hidroxilo del C1 de una de ellas, junto con los dos átomos del grupor hidroxilo del C4 de la otra, forman una <scene name='60/603296/Glucosidico1/3'>molécula de agua</scene> que se libera. Como consecuencia se forma un enlace covalente entre el oxígeno unido a dicho C1 y el C4. Este enlace es el enlace glucosídico, y el compuesto resultante es un <scene name='60/603296/Glucosidico2/2'>disacárido</scene>. Los enlaces glucosídicos pueden ser α o β en función de cual sea la configuración del monosacárido que aporta el átomo carbonílico al enlace. Así, la <scene name='60/603296/Maltosa/1'>maltosa</scene> presenta un enlace tipo α, mientras que la <scene name='60/603296/Celobiosa/1'>celobiosa</scene> lo presenta tipo β, al igual que la <scene name='60/603296/Sacarosa/1'>sacarosa</scene>.
 
-
==Polisacáridos==
+
 
-
*'''Almidón'''.- El almidón es un polisacárido con función de reserva característico de las células vegetales. Está formado por unidades de ''α-D-glucosa'' unidas por enlaces glucosídicos α(1->4) y α(1->6). Dentro de la molécula de almidón se distinguen dos tipos de polímeros:
+
 
-
**'''Amilosa'''.- Es un polímero lineal formado por por unidades de ''α-D-glucosa'' unidas por enlaces glucosídicos α(1->4). Para comprender mejor su estructura partiremos de una molécula de ''maltosa'' formada por <scene name='60/603296/Amilosa/3'>2 residuos</scene> de glucosa a la que iremos añadiendo un <scene name='60/603296/Amilosa/4'>tercer residuo</scene>, un <scene name='60/603296/Amilosa/5'>cuarto</scene>, un <scene name='60/603296/Amilosa/6'>quinto</scene> y un <scene name='60/603296/Amilosa/7'>sexto</scene>. Como se puede observar activando el <scene name='60/603296/Amilosa/8'>giro</scene> de la molécula, el ángulo característico que forman los sucesivos restos de glucosa propicia la formación de una estrutura helicoidal. Esta estructura se aprecia mejor si nos <scene name='60/603296/Amilosa/9'>alejamos</scene> y añadimos más restos hasta completar una cadena de <scene name='60/603296/Amilosa/10'>30 residuos</scene> de glucosa, que ahora podemos ver siguiendo su <scene name='60/603296/Amilosa/11'>eje longitudinal</scene>.
+
 
-
**'''Amilopectina'''.- Es un polímero ramificado formado por por unidades de ''α-D-glucosa'' unidas por enlaces glucosídicos α(1->4) con puntos de ramificación en forma de enlaces α(1->6). En la ventana de la derecha podemos apreciar un fragmento de ''amilopectina'' formado por <scene name='60/603296/Amilopectina/1'>5 residuos de glucosa</scene>. Nos acercamos ahora para visualizar la estructura de un <scene name='60/603296/Amilopectina/5'>punto de ramificación</scene>, en el que ahora podemos distinguir <scene name='60/603296/Amilopectina/10'>los 4 residuos de glucosa implicados</scene>. Añadiendo a la <scene name='60/603296/Amilopectina/12'>estructura inicial</scene> otros 25 restos de glucosa podemos apreciar la estructura de una porción mayor de la molécula de <scene name='60/603296/Amilopectina2/1'>amilopectina</scene>. Si nos <scene name='60/603296/Amilopectina/13'>alejamos</scene> un poco más podemos comprobar que los puntos de ramificación se encuentran espaciados entre sí por entre 24 y 30 residuos de glucosa
+
 
-
*<scene name='60/603296/Glucogeno/1'>Glucógeno</scene>.- Es un polisacárido con función de reserva característico de las células animales. Su estructura es muy similar a la de la ''amilopectina''. La diferencia reside en que los puntos de ramificación se encuentran más próximos entre sí (cada 8-12 residuos de glucosa en lugar de los 24-30 de la ''amilopectina''.
+
== References ==
-
*'''Celulosa'''.- Es un polímero lineal formado por por unidades de ''β-D-glucosa'' unidas por enlaces glucosídicos β(1->4). Para comprender mejor su estructura partiremos de una molécula de ''celobiosa'' formada por <scene name='60/603296/Celulosa/1'>2 residuos de glucosa</scene> unidas por un enlace glucosídico β(1->4). Ahora nos <scene name='60/603296/Celulosa/2'>alejamos</scene> y añadimos un <scene name='60/603296/Celulosa/3'>tercer</scene> residuo de glucosa, un <scene name='60/603296/Celulosa/4'>cuarto</scene>, un <scene name='60/603296/Celulosa/5'>quinto</scene> y un <scene name='60/603296/Celulosa/6'>sexto</scene>. Apreciamos en este tramo de la molécula de ''celulosa'' presenta un <scene name='60/603296/Celulosa/7'>arrollamiento helicoidal</scene> aunque mucho más extendido (o con un ''paso de rosca'' mucho mayor) que el que presenta la ''amilosa''. Esta diferencia estriba en la configuración de los enlaces glucosídicos α y β que presentan respectivamente uno y otro polímero. La configuración helicoidal extendida se puede apreciar mejor si de nuevo nos <scene name='60/603296/Celulosa/8'>alejamos</scene> y añadimos nuevos residuos hasta completar un tramo de la molécula de ''celulosa'' de <scene name='60/603296/Celulosa/9'>30 residuos de longitud</scene>. En una <scene name='60/603296/Celulosa/10'>visión polar</scene> también se aprecia el menor diámetro de la hélice en comparación con la de la ''amilosa''
+
<references/>
-
*<scene name='60/603296/Quitina/6'>Quitina</scene>.- Es un polímero lineal formado por por unidades de <scene name='60/603296/Quitina/4'>β-N-acetil-D-glucosamina</scene> unidas por enlaces glucosídicos β(1->4). En este tramo de <scene name='60/603296/Quitina/2'>3 residuos</scene> podemos apreciar con mayor detalle la estructura de la ''quitina'', por otra parte muy similar a la de la ''celulosa'', dado que ambas comparten el enlace glucosídico tipo β.
+
-
*<scene name='60/603296/Hialuron/2'>Ácido hialurónico</scene>.- Es un ''heteropolisacárido'' formado por residuos alternos de <scene name='60/603296/Quitina/4'>β-N-acetil-D-glucosamina</scene> y de <scene name='60/603296/Glucuronico/1'>ácido glucurónico</scene> unidos por enlaces glucosídicos β(1->4).
+

Current revision

Protein structure

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

Alejandro Porto

Personal tools