|  |   | 
		| (2 intermediate revisions not shown.) | 
| Line 1: | Line 1: | 
|  | + |  | 
|  | ==Crystal structure of E. coli apoH-protein== |  | ==Crystal structure of E. coli apoH-protein== | 
| - | <StructureSection load='3a7l' size='340' side='right' caption='[[3a7l]], [[Resolution|resolution]] 1.30Å' scene=''> | + | <StructureSection load='3a7l' size='340' side='right'caption='[[3a7l]], [[Resolution|resolution]] 1.30Å' scene=''> | 
|  | == Structural highlights == |  | == Structural highlights == | 
| - | <table><tr><td colspan='2'>[[3a7l]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Ecoli Ecoli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3A7L OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3A7L FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3a7l]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3A7L OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3A7L FirstGlance]. <br> | 
| - | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3a7a|3a7a]], [[3a7r|3a7r]]</td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.3Å</td></tr> | 
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">gcvH ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr>
 | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3a7l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3a7l OCA], [https://pdbe.org/3a7l PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3a7l RCSB], [https://www.ebi.ac.uk/pdbsum/3a7l PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3a7l ProSAT]</span></td></tr> | 
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3a7l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3a7l OCA], [http://pdbe.org/3a7l PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3a7l RCSB], [http://www.ebi.ac.uk/pdbsum/3a7l PDBsum]</span></td></tr> | + |  | 
|  | </table> |  | </table> | 
|  | == Function == |  | == Function == | 
| - | [[http://www.uniprot.org/uniprot/GCSH_ECOLI GCSH_ECOLI]] The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.[HAMAP-Rule:MF_00272] | + | [https://www.uniprot.org/uniprot/GCSH_ECOLI GCSH_ECOLI] The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.[HAMAP-Rule:MF_00272] | 
|  | == Evolutionary Conservation == |  | == Evolutionary Conservation == | 
|  | [[Image:Consurf_key_small.gif|200px|right]] |  | [[Image:Consurf_key_small.gif|200px|right]] | 
|  | Check<jmol> |  | Check<jmol> | 
|  |   <jmolCheckbox> |  |   <jmolCheckbox> | 
| - |     <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a7/3a7l_consurf.spt"</scriptWhenChecked> | + |     <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/a7/3a7l_consurf.spt"</scriptWhenChecked> | 
|  |     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |  |     <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | 
|  |     <text>to colour the structure by Evolutionary Conservation</text> |  |     <text>to colour the structure by Evolutionary Conservation</text> | 
| Line 32: | Line 32: | 
|  | __TOC__ |  | __TOC__ | 
|  | </StructureSection> |  | </StructureSection> | 
| - | [[Category: Ecoli]] | + | [[Category: Escherichia coli K-12]] | 
| - | [[Category: Fujiwara, K]]
 | + | [[Category: Large Structures]] | 
| - | [[Category: Maita, N]] | + | [[Category: Fujiwara K]] | 
| - | [[Category: Glycine cleavage system]] | + | [[Category: Maita N]] | 
| - | [[Category: Lipoic acid]] | + |  | 
| - | [[Category: Lipoyl]]
 | + |  | 
| - | [[Category: Transport protein]]
 | + |  | 
|  |   Structural highlights   Function GCSH_ECOLI The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein.[HAMAP-Rule:MF_00272]
   Evolutionary Conservation Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
 
  Publication Abstract from PubMed Lipoate-protein ligase A (LplA) catalyzes the attachment of lipoic acid to lipoate-dependent enzymes by a two-step reaction: first the lipoate adenylation reaction and, second, the lipoate transfer reaction. We previously determined the crystal structure of Escherichia coli LplA in its unliganded form and a binary complex with lipoic acid (Fujiwara, K., Toma, S., Okamura-Ikeda, K., Motokawa, Y., Nakagawa, A., and Taniguchi, H. (2005) J Biol. Chem. 280, 33645-33651). Here, we report two new LplA structures, LplA.lipoyl-5'-AMP and LplA.octyl-5'-AMP.apoH-protein complexes, which represent the post-lipoate adenylation intermediate state and the pre-lipoate transfer intermediate state, respectively. These structures demonstrate three large scale conformational changes upon completion of the lipoate adenylation reaction: movements of the adenylate-binding and lipoate-binding loops to maintain the lipoyl-5'-AMP reaction intermediate and rotation of the C-terminal domain by about 180 degrees . These changes are prerequisites for LplA to accommodate apoprotein for the second reaction. The Lys(133) residue plays essential roles in both lipoate adenylation and lipoate transfer reactions. Based on structural and kinetic data, we propose a reaction mechanism driven by conformational changes.
 Global conformational change associated with the two-step reaction catalyzed by Escherichia coli lipoate-protein ligase A.,Fujiwara K, Maita N, Hosaka H, Okamura-Ikeda K, Nakagawa A, Taniguchi H J Biol Chem. 2010 Mar 26;285(13):9971-80. Epub 2010 Jan 19. PMID:20089862[1]
 From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
   References ↑ Fujiwara K, Maita N, Hosaka H, Okamura-Ikeda K, Nakagawa A, Taniguchi H. Global conformational change associated with the two-step reaction catalyzed by Escherichia coli lipoate-protein ligase A. J Biol Chem. 2010 Mar 26;285(13):9971-80. Epub 2010 Jan 19. PMID:20089862 doi:10.1074/jbc.M109.078717
 
 |