|
|
(4 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| + | |
| ==Solution structure of the N-terminal domain of Human N60D calmodulin refined with paramagnetism based strategy== | | ==Solution structure of the N-terminal domain of Human N60D calmodulin refined with paramagnetism based strategy== |
- | <StructureSection load='1sw8' size='340' side='right' caption='[[1sw8]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | + | <StructureSection load='1sw8' size='340' side='right'caption='[[1sw8]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1sw8]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SW8 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1SW8 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1sw8]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SW8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1SW8 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">Solution NMR</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1sw8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1sw8 OCA], [http://pdbe.org/1sw8 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1sw8 RCSB], [http://www.ebi.ac.uk/pdbsum/1sw8 PDBsum]</span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> |
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1sw8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1sw8 OCA], [https://pdbe.org/1sw8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1sw8 RCSB], [https://www.ebi.ac.uk/pdbsum/1sw8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1sw8 ProSAT]</span></td></tr> |
| </table> | | </table> |
| + | == Disease == |
| + | [https://www.uniprot.org/uniprot/CALM1_HUMAN CALM1_HUMAN] The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of CPVT4. The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of LQT14. |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/CALM1_HUMAN CALM1_HUMAN] Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis (PubMed:16760425). Mediates calcium-dependent inactivation of CACNA1C (PubMed:26969752). Positively regulates calcium-activated potassium channel activity of KCNN2 (PubMed:27165696).<ref>PMID:16760425</ref> <ref>PMID:23893133</ref> <ref>PMID:26969752</ref> <ref>PMID:27165696</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Check<jmol> | | Check<jmol> |
| <jmolCheckbox> | | <jmolCheckbox> |
- | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/sw/1sw8_consurf.spt"</scriptWhenChecked> | + | <scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/sw/1sw8_consurf.spt"</scriptWhenChecked> |
| <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> |
| <text>to colour the structure by Evolutionary Conservation</text> | | <text>to colour the structure by Evolutionary Conservation</text> |
Line 27: |
Line 33: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Calmodulin|Calmodulin]] | + | *[[Calmodulin 3D structures|Calmodulin 3D structures]] |
- | *[[Maximum Occurrence|Maximum Occurrence]]
| + | |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
- | [[Category: Bertini, I]] | + | [[Category: Large Structures]] |
- | [[Category: Bianco, C Del]] | + | [[Category: Bertini I]] |
- | [[Category: Gelis, I]] | + | [[Category: Del Bianco C]] |
- | [[Category: Katsaros, N]] | + | [[Category: Gelis I]] |
- | [[Category: Luchinat, C]] | + | [[Category: Katsaros N]] |
- | [[Category: Parigi, G]] | + | [[Category: Luchinat C]] |
- | [[Category: Peana, M]] | + | [[Category: Parigi G]] |
- | [[Category: Provenzani, A]] | + | [[Category: Peana M]] |
- | [[Category: SPINE, Structural Proteomics in Europe]]
| + | [[Category: Provenzani A]] |
- | [[Category: Zoroddu, M A]] | + | [[Category: Zoroddu MA]] |
- | [[Category: Calcium-binding protein]]
| + | |
- | [[Category: Calmodulin]]
| + | |
- | [[Category: Ef-hand]]
| + | |
- | [[Category: Lanthanide]]
| + | |
- | [[Category: Nmr]]
| + | |
- | [[Category: Spine]]
| + | |
- | [[Category: Structural genomic]]
| + | |
- | [[Category: Structural proteomics in europe]]
| + | |
| Structural highlights
Disease
CALM1_HUMAN The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of CPVT4. The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of LQT14.
Function
CALM1_HUMAN Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis (PubMed:16760425). Mediates calcium-dependent inactivation of CACNA1C (PubMed:26969752). Positively regulates calcium-activated potassium channel activity of KCNN2 (PubMed:27165696).[1] [2] [3] [4]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The conformational space sampled by the two-domain protein calmodulin has been explored by an approach based on four sets of NMR observables obtained on Tb(3+)- and Tm(3+)-substituted proteins. The observables are the pseudocontact shifts and residual dipolar couplings of the C-terminal domain when lanthanide substitution is at the N-terminal domain. Each set of observables provides independent information on the conformations experienced by the molecule. It is found that not all sterically allowed conformations are equally populated. Taking the N-terminal domain as the reference, the C-terminal domain preferentially resides in a region of space inscribed in a wide elliptical cone. The axis of the cone is tilted by approximately 30 degrees with respect to the direction of the N-terminal part of the interdomain helix, which is known to have a flexible central part in solution. The C-terminal domain also undergoes rotation about the axis defined by the C-terminal part of the interdomain helix. Neither the extended helix conformation initially observed in the solid state for free calcium calmodulin nor the closed conformation(s) adopted by calcium calmodulin either alone or in its adduct(s) with target peptide(s) is among the most preferred ones. These findings are unique, both in terms of structural information obtained on a biomolecule that samples multiple conformations and in terms of the approach developed to achieve the results. The same approach is in principle applicable to other multidomain proteins, as well as to multiple interaction modes between two macromolecular partners.
Experimentally exploring the conformational space sampled by domain reorientation in calmodulin.,Bertini I, Del Bianco C, Gelis I, Katsaros N, Luchinat C, Parigi G, Peana M, Provenzani A, Zoroddu MA Proc Natl Acad Sci U S A. 2004 May 4;101(18):6841-6. Epub 2004 Apr 20. PMID:15100408[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Tsang WY, Spektor A, Luciano DJ, Indjeian VB, Chen Z, Salisbury JL, Sanchez I, Dynlacht BD. CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability. Mol Biol Cell. 2006 Aug;17(8):3423-34. Epub 2006 Jun 7. PMID:16760425 doi:10.1091/mbc.E06-04-0371
- ↑ Reichow SL, Clemens DM, Freites JA, Nemeth-Cahalan KL, Heyden M, Tobias DJ, Hall JE, Gonen T. Allosteric mechanism of water-channel gating by Ca-calmodulin. Nat Struct Mol Biol. 2013 Jul 28. doi: 10.1038/nsmb.2630. PMID:23893133 doi:10.1038/nsmb.2630
- ↑ Boczek NJ, Gomez-Hurtado N, Ye D, Calvert ML, Tester DJ, Kryshtal D, Hwang HS, Johnson CN, Chazin WJ, Loporcaro CG, Shah M, Papez AL, Lau YR, Kanter R, Knollmann BC, Ackerman MJ. Spectrum and Prevalence of CALM1-, CALM2-, and CALM3-Encoded Calmodulin Variants in Long QT Syndrome and Functional Characterization of a Novel Long QT Syndrome-Associated Calmodulin Missense Variant, E141G. Circ Cardiovasc Genet. 2016 Apr;9(2):136-146. doi:, 10.1161/CIRCGENETICS.115.001323. Epub 2016 Mar 11. PMID:26969752 doi:http://dx.doi.org/10.1161/CIRCGENETICS.115.001323
- ↑ Yu CC, Ko JS, Ai T, Tsai WC, Chen Z, Rubart M, Vatta M, Everett TH 4th, George AL Jr, Chen PS. Arrhythmogenic calmodulin mutations impede activation of small-conductance calcium-activated potassium current. Heart Rhythm. 2016 Aug;13(8):1716-23. doi: 10.1016/j.hrthm.2016.05.009. Epub 2016, May 7. PMID:27165696 doi:http://dx.doi.org/10.1016/j.hrthm.2016.05.009
- ↑ Bertini I, Del Bianco C, Gelis I, Katsaros N, Luchinat C, Parigi G, Peana M, Provenzani A, Zoroddu MA. Experimentally exploring the conformational space sampled by domain reorientation in calmodulin. Proc Natl Acad Sci U S A. 2004 May 4;101(18):6841-6. Epub 2004 Apr 20. PMID:15100408 doi:10.1073/pnas.0308641101
|