1e7r

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (11:55, 13 December 2023) (edit) (undo)
 
(14 intermediate revisions not shown.)
Line 1: Line 1:
-
[[Image:1e7r.jpg|left|200px]]
 
-
{{Structure
+
==GDP 4-keto-6-deoxy-D-mannose epimerase reductase Y136E==
-
|PDB= 1e7r |SIZE=350|CAPTION= <scene name='initialview01'>1e7r</scene>, resolution 1.6&Aring;
+
<StructureSection load='1e7r' size='340' side='right'caption='[[1e7r]], [[Resolution|resolution]] 1.60&Aring;' scene=''>
-
|SITE= <scene name='pdbsite=AC1:Nap+Binding+Site+For+Chain+A'>AC1</scene>, <scene name='pdbsite=AC2:Uvw+Binding+Site+For+Chain+A'>AC2</scene> and <scene name='pdbsite=CAT:Catalytic+Triad+Residue+GLU+A136+Is+Mutated+The+Native+B+...'>CAT</scene>
+
== Structural highlights ==
-
|LIGAND= <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene>, <scene name='pdbligand=UVW:ACETYLPHOSPHATE'>UVW</scene>
+
<table><tr><td colspan='2'>[[1e7r]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1E7R OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1E7R FirstGlance]. <br>
-
|ACTIVITY=
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.6&#8491;</td></tr>
-
|GENE=
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=TRS:2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL'>TRS</scene>, <scene name='pdbligand=UVW:ACETYLPHOSPHATE'>UVW</scene></td></tr>
-
|DOMAIN=
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1e7r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1e7r OCA], [https://pdbe.org/1e7r PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1e7r RCSB], [https://www.ebi.ac.uk/pdbsum/1e7r PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1e7r ProSAT]</span></td></tr>
-
|RELATEDENTRY=
+
</table>
-
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1e7r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1e7r OCA], [http://www.ebi.ac.uk/pdbsum/1e7r PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1e7r RCSB]</span>
+
== Function ==
-
}}
+
[https://www.uniprot.org/uniprot/FCL_ECOLI FCL_ECOLI] Catalyzes the two-step NADP-dependent conversion of GDP-4-dehydro-6-deoxy-D-mannose to GDP-fucose, involving an epimerase and a reductase reaction.<ref>PMID:9473059</ref> <ref>PMID:10480878</ref> <ref>PMID:11021971</ref>
-
 
+
== Evolutionary Conservation ==
-
'''GDP 4-KETO-6-DEOXY-D-MANNOSE EPIMERASE REDUCTASE Y136E'''
+
[[Image:Consurf_key_small.gif|200px|right]]
-
 
+
Check<jmol>
-
 
+
<jmolCheckbox>
-
==Overview==
+
<scriptWhenChecked>; select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/e7/1e7r_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1e7r ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
GDP-4-keto-6-deoxy-d-mannose epimerase/reductase is a bifunctional enzyme responsible for the last step in the biosynthesis of GDP-l-fucose, the substrate of fucosyl transferases. Several cell-surface antigens, including the leukocyte Lewis system and cell-surface antigens in pathogenic bacteria, depend on the availability of GDP-l-fucose for their expression. Therefore, the enzyme is a potential target for therapy in pathological states depending on selectin-mediated cell-to-cell interactions. Previous crystallographic investigations have shown that GDP-4-keto-6-deoxy-d-mannose epimerase/reductase belongs to the short-chain dehydrogenase/reductase protein homology family. The enzyme active-site region is at the interface of an N-terminal NADPH-binding domain and a C-terminal domain, held to bind the substrate. The design, expression and functional characterization of seven site-specific mutant forms of GDP-4-keto-6-deoxy-d-mannose epimerase/reductase are reported here. In parallel, the crystal structures of the native holoenzyme and of three mutants (Ser107Ala, Tyr136Glu and Lys140Arg) have been investigated and refined at 1. 45-1.60 A resolution, based on synchrotron data (R-factors range between 12.6 % and 13.9 %). The refined protein models show that besides the active-site residues Ser107, Tyr136 and Lys140, whose mutations impair the overall enzymatic activity and may affect the coenzyme binding mode, side-chains capable of proton exchange, located around the expected substrate (GDP-4-keto-6-deoxy-d-mannose) binding pocket, are selectively required during the epimerization and reduction steps. Among these, Cys109 and His179 may play a primary role in proton exchange between the enzyme and the epimerization catalytic intermediates. Finally, the additional role of mutated active-site residues involved in substrate recognition and in enzyme stability has been analyzed.
GDP-4-keto-6-deoxy-d-mannose epimerase/reductase is a bifunctional enzyme responsible for the last step in the biosynthesis of GDP-l-fucose, the substrate of fucosyl transferases. Several cell-surface antigens, including the leukocyte Lewis system and cell-surface antigens in pathogenic bacteria, depend on the availability of GDP-l-fucose for their expression. Therefore, the enzyme is a potential target for therapy in pathological states depending on selectin-mediated cell-to-cell interactions. Previous crystallographic investigations have shown that GDP-4-keto-6-deoxy-d-mannose epimerase/reductase belongs to the short-chain dehydrogenase/reductase protein homology family. The enzyme active-site region is at the interface of an N-terminal NADPH-binding domain and a C-terminal domain, held to bind the substrate. The design, expression and functional characterization of seven site-specific mutant forms of GDP-4-keto-6-deoxy-d-mannose epimerase/reductase are reported here. In parallel, the crystal structures of the native holoenzyme and of three mutants (Ser107Ala, Tyr136Glu and Lys140Arg) have been investigated and refined at 1. 45-1.60 A resolution, based on synchrotron data (R-factors range between 12.6 % and 13.9 %). The refined protein models show that besides the active-site residues Ser107, Tyr136 and Lys140, whose mutations impair the overall enzymatic activity and may affect the coenzyme binding mode, side-chains capable of proton exchange, located around the expected substrate (GDP-4-keto-6-deoxy-d-mannose) binding pocket, are selectively required during the epimerization and reduction steps. Among these, Cys109 and His179 may play a primary role in proton exchange between the enzyme and the epimerization catalytic intermediates. Finally, the additional role of mutated active-site residues involved in substrate recognition and in enzyme stability has been analyzed.
-
==About this Structure==
+
Probing the catalytic mechanism of GDP-4-keto-6-deoxy-d-mannose Epimerase/Reductase by kinetic and crystallographic characterization of site-specific mutants.,Rosano C, Bisso A, Izzo G, Tonetti M, Sturla L, De Flora A, Bolognesi M J Mol Biol. 2000 Oct 13;303(1):77-91. PMID:11021971<ref>PMID:11021971</ref>
-
1E7R is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1E7R OCA].
+
-
==Reference==
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
Probing the catalytic mechanism of GDP-4-keto-6-deoxy-d-mannose Epimerase/Reductase by kinetic and crystallographic characterization of site-specific mutants., Rosano C, Bisso A, Izzo G, Tonetti M, Sturla L, De Flora A, Bolognesi M, J Mol Biol. 2000 Oct 13;303(1):77-91. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/11021971 11021971]
+
</div>
 +
<div class="pdbe-citations 1e7r" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
[[Category: Escherichia coli]]
[[Category: Escherichia coli]]
-
[[Category: Single protein]]
+
[[Category: Large Structures]]
-
[[Category: Bolognesi, M.]]
+
[[Category: Bolognesi M]]
-
[[Category: Izzo, G.]]
+
[[Category: Izzo G]]
-
[[Category: Rosano, C.]]
+
[[Category: Rosano C]]
-
[[Category: epimerase/reductase]]
+
-
[[Category: red]]
+
-
[[Category: sdr]]
+
-
 
+
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 19:57:03 2008''
+

Current revision

GDP 4-keto-6-deoxy-D-mannose epimerase reductase Y136E

PDB ID 1e7r

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools