5hzn
From Proteopedia
(Difference between revisions)
(New page: '''Unreleased structure''' The entry 5hzn is ON HOLD Authors: Cowan-Jacob, S.W. Description: Structure of NVP-AEW541 in complex with IGF-1R kinase Category: Unreleased Structures [...) |
|||
(4 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==Structure of NVP-AEW541 in complex with IGF-1R kinase== | |
+ | <StructureSection load='5hzn' size='340' side='right'caption='[[5hzn]], [[Resolution|resolution]] 2.20Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[5hzn]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5HZN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5HZN FirstGlance]. <br> | ||
+ | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> | ||
+ | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=66A:7-[CIS-3-(AZETIDIN-1-YLMETHYL)CYCLOBUTYL]-5-[3-(BENZYLOXY)PHENYL]-7H-PYRROLO[2,3-D]PYRIMIDIN-4-AMINE'>66A</scene>, <scene name='pdbligand=MES:2-(N-MORPHOLINO)-ETHANESULFONIC+ACID'>MES</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5hzn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5hzn OCA], [https://pdbe.org/5hzn PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5hzn RCSB], [https://www.ebi.ac.uk/pdbsum/5hzn PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5hzn ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Disease == | ||
+ | [https://www.uniprot.org/uniprot/IGF1R_HUMAN IGF1R_HUMAN] Defects in IGF1R are a cause of insulin-like growth factor 1 resistance (IGF1RES) [MIM:[https://omim.org/entry/270450 270450]. It is a disorder characterized by intrauterine growth retardation and poor postnatal growth accompanied with increased plasma IGF1.<ref>PMID:14657428</ref> <ref>PMID:15928254</ref> | ||
+ | == Function == | ||
+ | [https://www.uniprot.org/uniprot/IGF1R_HUMAN IGF1R_HUMAN] Receptor tyrosine kinase which mediates actions of insulin-like growth factor 1 (IGF1). Binds IGF1 with high affinity and IGF2 and insulin (INS) with a lower affinity. The activated IGF1R is involved in cell growth and survival control. IGF1R is crucial for tumor transformation and survival of malignant cell. Ligand binding activates the receptor kinase, leading to receptor autophosphorylation, and tyrosines phosphorylation of multiple substrates, that function as signaling adapter proteins including, the insulin-receptor substrates (IRS1/2), Shc and 14-3-3 proteins. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway and the Ras-MAPK pathway. The result of activating the MAPK pathway is increased cellular proliferation, whereas activating the PI3K pathway inhibits apoptosis and stimulates protein synthesis. Phosphorylated IRS1 can activate the 85 kDa regulatory subunit of PI3K (PIK3R1), leading to activation of several downstream substrates, including protein AKT/PKB. AKT phosphorylation, in turn, enhances protein synthesis through mTOR activation and triggers the antiapoptotic effects of IGFIR through phosphorylation and inactivation of BAD. In parallel to PI3K-driven signaling, recruitment of Grb2/SOS by phosphorylated IRS1 or Shc leads to recruitment of Ras and activation of the ras-MAPK pathway. In addition to these two main signaling pathways IGF1R signals also through the Janus kinase/signal transducer and activator of transcription pathway (JAK/STAT). Phosphorylation of JAK proteins can lead to phosphorylation/activation of signal transducers and activators of transcription (STAT) proteins. In particular activation of STAT3, may be essential for the transforming activity of IGF1R. The JAK/STAT pathway activates gene transcription and may be responsible for the transforming activity. JNK kinases can also be activated by the IGF1R. IGF1 exerts inhibiting activities on JNK activation via phosphorylation and inhibition of MAP3K5/ASK1, which is able to directly associate with the IGF1R.<ref>PMID:8257688</ref> <ref>PMID:1846292</ref> <ref>PMID:8452530</ref> <ref>PMID:7679099</ref> <ref>PMID:10579905</ref> <ref>PMID:10747872</ref> <ref>PMID:12138094</ref> <ref>PMID:12556535</ref> <ref>PMID:16831875</ref> When present in a hybrid receptor with INSR, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin.<ref>PMID:8257688</ref> <ref>PMID:1846292</ref> <ref>PMID:8452530</ref> <ref>PMID:7679099</ref> <ref>PMID:10579905</ref> <ref>PMID:10747872</ref> <ref>PMID:12138094</ref> <ref>PMID:12556535</ref> <ref>PMID:16831875</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | We report structure-guided modifications of the benzyloxy substituent of the Insulin-like Growth Factor-1 Receptor (IGF-1R) inhibitor NVP-AEW541. This chemical group has been shown to confer selectivity against other protein kinases but at the expense of a metabolism liability. X-ray crystallography has revealed that the benzyloxy moiety interacts with a lysine cation of the IGF-1R kinase domain via its ether function and its aromatic pi-system and is nicely embedded in an induced hydrophobic pocket. We show that 1,4-diethers displaying an adequate hydrophobic and constrained shape are advantageous benzyloxy replacements. A single digit nanomolar inhibitor (compound 20, IC50=8.9nM) was identified following this approach. | ||
- | + | Identification of a 5-[3-phenyl-(2-cyclic-ether)-methylether]-4-aminopyrrolo[2,3-d]pyrimidine series of IGF-1R inhibitors.,Stauffer F, Cowan-Jacob SW, Scheufler C, Furet P Bioorg Med Chem Lett. 2016 Apr 15;26(8):2065-7. doi: 10.1016/j.bmcl.2016.02.074. , Epub 2016 Feb 26. PMID:26951750<ref>PMID:26951750</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | [[Category: | + | </div> |
- | [[Category: Cowan-Jacob | + | <div class="pdbe-citations 5hzn" style="background-color:#fffaf0;"></div> |
+ | |||
+ | ==See Also== | ||
+ | *[[Insulin-like growth factor receptor|Insulin-like growth factor receptor]] | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Homo sapiens]] | ||
+ | [[Category: Large Structures]] | ||
+ | [[Category: Cowan-Jacob SW]] |
Current revision
Structure of NVP-AEW541 in complex with IGF-1R kinase
|