5ik2

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (13:58, 30 August 2023) (edit) (undo)
 
(4 intermediate revisions not shown.)
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 5ik2 is ON HOLD until Paper Publication
+
==Caldalaklibacillus thermarum F1-ATPase (epsilon mutant)==
 +
<StructureSection load='5ik2' size='340' side='right'caption='[[5ik2]], [[Resolution|resolution]] 2.60&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[5ik2]] is a 16 chain structure with sequence from [https://en.wikipedia.org/wiki/Caldalkalibacillus_thermarum_TA2.A1 Caldalkalibacillus thermarum TA2.A1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5IK2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5IK2 FirstGlance]. <br>
 +
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6&#8491;</td></tr>
 +
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5ik2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5ik2 OCA], [https://pdbe.org/5ik2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5ik2 RCSB], [https://www.ebi.ac.uk/pdbsum/5ik2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5ik2 ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[https://www.uniprot.org/uniprot/F5LA73_CALTT F5LA73_CALTT] Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.[ARBA:ARBA00003456][HAMAP-Rule:MF_00815]
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The crystal structure has been determined of the F1-catalytic domain of the F-ATPase from Caldalkalibacillus thermarum, which hydrolyzes adenosine triphosphate (ATP) poorly. It is very similar to those of active mitochondrial and bacterial F1-ATPases. In the F-ATPase from Geobacillus stearothermophilus, conformational changes in the epsilon-subunit are influenced by intracellular ATP concentration and membrane potential. When ATP is plentiful, the epsilon-subunit assumes a "down" state, with an ATP molecule bound to its two C-terminal alpha-helices; when ATP is scarce, the alpha-helices are proposed to inhibit ATP hydrolysis by assuming an "up" state, where the alpha-helices, devoid of ATP, enter the alpha3beta3-catalytic region. However, in the Escherichia coli enzyme, there is no evidence that such ATP binding to the epsilon-subunit is mechanistically important for modulating the enzyme's hydrolytic activity. In the structure of the F1-ATPase from C. thermarum, ATP and a magnesium ion are bound to the alpha-helices in the down state. In a form with a mutated epsilon-subunit unable to bind ATP, the enzyme remains inactive and the epsilon-subunit is down. Therefore, neither the gamma-subunit nor the regulatory ATP bound to the epsilon-subunit is involved in the inhibitory mechanism of this particular enzyme. The structure of the alpha3beta3-catalytic domain is likewise closely similar to those of active F1-ATPases. However, although the betaE-catalytic site is in the usual "open" conformation, it is occupied by the unique combination of an ADP molecule with no magnesium ion and a phosphate ion. These bound hydrolytic products are likely to be the basis of inhibition of ATP hydrolysis.
-
Authors: Ferguson, S.A., Cook, G.M., Montgomery, M.G., Leslie, A.G.W., Walker, J.E.
+
Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum.,Ferguson SA, Cook GM, Montgomery MG, Leslie AG, Walker JE Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):10860-5. doi:, 10.1073/pnas.1612035113. Epub 2016 Sep 12. PMID:27621435<ref>PMID:27621435</ref>
-
Description: Caldalaklibacillus thermarum F1-ATPase (epsilon mutant)
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
-
[[Category: Leslie, A.G.W]]
+
<div class="pdbe-citations 5ik2" style="background-color:#fffaf0;"></div>
-
[[Category: Montgomery, M.G]]
+
 
-
[[Category: Walker, J.E]]
+
==See Also==
-
[[Category: Cook, G.M]]
+
*[[ATPase 3D structures|ATPase 3D structures]]
-
[[Category: Ferguson, S.A]]
+
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Caldalkalibacillus thermarum TA2 A1]]
 +
[[Category: Large Structures]]
 +
[[Category: Cook GM]]
 +
[[Category: Ferguson SA]]
 +
[[Category: Leslie AGW]]
 +
[[Category: Montgomery MG]]
 +
[[Category: Walker JE]]

Current revision

Caldalaklibacillus thermarum F1-ATPase (epsilon mutant)

PDB ID 5ik2

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools