5gh9
From Proteopedia
(Difference between revisions)
m (Protected "5gh9" [edit=sysop:move=sysop]) |
|||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | '''Unreleased structure''' | ||
| - | + | ==Crystal structure of CBP Bromodomain with H3K56ac peptide== | |
| + | <StructureSection load='5gh9' size='340' side='right'caption='[[5gh9]], [[Resolution|resolution]] 1.45Å' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[5gh9]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5GH9 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5GH9 FirstGlance]. <br> | ||
| + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.451Å</td></tr> | ||
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ALY:N(6)-ACETYLLYSINE'>ALY</scene></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5gh9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5gh9 OCA], [https://pdbe.org/5gh9 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5gh9 RCSB], [https://www.ebi.ac.uk/pdbsum/5gh9 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5gh9 ProSAT]</span></td></tr> | ||
| + | </table> | ||
| + | == Disease == | ||
| + | [https://www.uniprot.org/uniprot/CBP_HUMAN CBP_HUMAN] Note=Chromosomal aberrations involving CREBBP may be a cause of acute myeloid leukemias. Translocation t(8;16)(p11;p13) with KAT6A; translocation t(11;16)(q23;p13.3) with MLL/HRX; translocation t(10;16)(q22;p13) with KAT6B. KAT6A-CREBBP may induce leukemia by inhibiting RUNX1-mediated transcription. Defects in CREBBP are a cause of Rubinstein-Taybi syndrome type 1 (RSTS1) [MIM:[https://omim.org/entry/180849 180849]. RSTS1 is an autosomal dominant disorder characterized by craniofacial abnormalities, broad thumbs, broad big toes, mental retardation and a propensity for development of malignancies.<ref>PMID:11331617</ref> <ref>PMID:12114483</ref> <ref>PMID:12566391</ref> <ref>PMID:15706485</ref> | ||
| + | == Function == | ||
| + | [https://www.uniprot.org/uniprot/CBP_HUMAN CBP_HUMAN] Acetylates histones, giving a specific tag for transcriptional activation. Also acetylates non-histone proteins, like NCOA3 and FOXO1. Binds specifically to phosphorylated CREB and enhances its transcriptional activity toward cAMP-responsive genes. Acts as a coactivator of ALX1 in the presence of EP300.<ref>PMID:9707565</ref> <ref>PMID:11154691</ref> <ref>PMID:12738767</ref> <ref>PMID:12929931</ref> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | The acetylation of lysine 56 of histone H3 (H3K56ac) enhances the binding affinity of histone chaperones to H3-H4 dimers. CREB binding protein (CBP) possesses a bromodomain that recognizes H3K56 acetylation. CBP also possesses a histone acetyltransferase (HAT) domain, which has been shown to promote H3K56 acetylation of free histones to facilitate delivery of replication-dependent chaperones to acetylated histones for chromatin assembly. However, the mechanism by which the CBP bromodomain recognizes H3K56ac, and thecontext in which such recognition occurs remains elusive. Here, we solved the crystal structure of the CBP bromodomain in complex with an H3K56ac peptide. Our data demonstrate that the CBP bromodomain recognizes H3K56ac with high affinity. Structural and affinity analyses reveal that the CBPbromodomain prefers an aromatic residue at the -2 position and an arginine at the -4 position from the acetyl-lysine, and that the CBP bromodomain selectively recognizes an extended conformation of the H3 alphaN helix that contains H3K56ac. We also demonstrate that the CBP bromodomain binds to H3K56ac in a recombinant H3-H4 dimer but not in a mono-nucleosome. Our results suggest that the CBP bromodomain selectively recognizes an extended conformation of the K56-acetylated H3 alphaN region within an H3-H4 dimer, which is expected to facilitate the HAT activity of CBP for subsequent H3K56 acetylation of free histones. This article is protected by copyright. All rights reserved. | ||
| - | + | Structural insight into CBP bromodomain-mediated recognition of acetylated histone H3K56ac.,Xu L, Cheng A, Huang M, Zhang J, Jiang Y, Wang C, Li F, Bao H, Gao J, Wang N, Liu J, Wu J, Wong CCL, Ruan K FEBS J. 2017 Aug 16. doi: 10.1111/febs.14198. PMID:28815970<ref>PMID:28815970</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | [[Category: | + | </div> |
| - | [[Category: Xu | + | <div class="pdbe-citations 5gh9" style="background-color:#fffaf0;"></div> |
| + | == References == | ||
| + | <references/> | ||
| + | __TOC__ | ||
| + | </StructureSection> | ||
| + | [[Category: Homo sapiens]] | ||
| + | [[Category: Large Structures]] | ||
| + | [[Category: Xu L]] | ||
Current revision
Crystal structure of CBP Bromodomain with H3K56ac peptide
| |||||||||||
