|  |   | 
		| (2 intermediate revisions not shown.) | 
| Line 1: | Line 1: | 
|  |  |  |  | 
|  | ==Bacillus subtilis AP endonuclease ExoA== |  | ==Bacillus subtilis AP endonuclease ExoA== | 
| - | <StructureSection load='5cfe' size='340' side='right' caption='[[5cfe]], [[Resolution|resolution]] 1.84Å' scene=''> | + | <StructureSection load='5cfe' size='340' side='right'caption='[[5cfe]], [[Resolution|resolution]] 1.84Å' scene=''> | 
|  | == Structural highlights == |  | == Structural highlights == | 
| - | <table><tr><td colspan='2'>[[5cfe]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5CFE OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5CFE FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5cfe]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacillus_subtilis_subsp._subtilis_str._168 Bacillus subtilis subsp. subtilis str. 168]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5CFE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5CFE FirstGlance]. <br> | 
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>,<scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.84Å</td></tr> | 
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Exodeoxyribonuclease_III Exodeoxyribonuclease III],with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.11.2 3.1.11.2] </span></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene></td></tr> | 
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5cfe FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5cfe OCA], [http://pdbe.org/5cfe PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5cfe RCSB], [http://www.ebi.ac.uk/pdbsum/5cfe PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5cfe ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5cfe FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5cfe OCA], [https://pdbe.org/5cfe PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5cfe RCSB], [https://www.ebi.ac.uk/pdbsum/5cfe PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5cfe ProSAT]</span></td></tr> | 
|  | </table> |  | </table> | 
|  | + | == Function == | 
|  | + | [https://www.uniprot.org/uniprot/EXOA_BACSU EXOA_BACSU]  | 
|  | <div style="background-color:#fffaf0;"> |  | <div style="background-color:#fffaf0;"> | 
|  | == Publication Abstract from PubMed == |  | == Publication Abstract from PubMed == | 
| Line 21: | Line 23: | 
|  | __TOC__ |  | __TOC__ | 
|  | </StructureSection> |  | </StructureSection> | 
| - | [[Category: Exodeoxyribonuclease III]] | + | [[Category: Bacillus subtilis subsp. subtilis str. 168]] | 
| - | [[Category: Morera, S]] | + | [[Category: Large Structures]] | 
| - | [[Category: Vigouroux, A]] | + | [[Category: Morera S]] | 
| - | [[Category: Ap endonuclease]] | + | [[Category: Vigouroux A]] | 
| - | [[Category: Hydrolase]]
 | + |  | 
|  |   Structural highlights   Function EXOA_BACSU 
 
  Publication Abstract from PubMed Oxidatively damaged DNA bases are substrates for two overlapping repair pathways: DNA glycosylase-initiated base excision repair (BER) and apurinic/apyrimidinic (AP) endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, an AP endonuclease cleaves DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in the NIR pathway, the same AP endonuclease incises DNA 5' to an oxidized base. The majority of characterized AP endonucleases possess classic BER activities, and approximately a half of them can also have a NIR activity. At present, the molecular mechanism underlying DNA substrate specificity of AP endonucleases remains unclear mainly due to the absence of a published structure of the enzyme in complex with a damaged base. To identify critical residues involved in the NIR function, we performed biochemical and structural characterization of Bacillus subtilis AP endonuclease ExoA and compared its crystal structure with the structures of other AP endonucleases: Escherichiacoli exonuclease III (Xth), human APE1, and archaeal Mth212. We found conserved amino acid residues in the NIR-specific enzymes APE1, Mth212, and ExoA. Four of these positions were studied by means of point mutations in APE1: we applied substitution with the corresponding residue found in NIR-deficient E. coli Xth (Y128H, N174Q, G231S, and T268D). The APE1-T268D mutant showed a drastically decreased NIR activity and an inverted Mg2+ dependence of the AP site cleavage activity, which is in line with the presence of an aspartic residue at the equivalent position among other known NIR-deficient AP endonucleases. Taken together, these data show that NIR is an evolutionarily conserved function in the Xth family of AP endonucleases.
 Structural comparison of AP endonucleases from the exonuclease III family reveals new amino acid residues in human AP endonuclease 1 that are involved in incision of damaged DNA.,Redrejo-Rodriguez M, Vigouroux A, Mursalimov A, Grin I, Alili D, Koshenov Z, Akishev Z, Maksimenko A, Bissenbaev AK, Matkarimov BT, Saparbaev M, Ishchenko AA, Morera S Biochimie. 2016 Jun 22. pii: S0300-9084(16)30120-1. doi:, 10.1016/j.biochi.2016.06.011. PMID:27343627[1]
 From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
   References ↑ Redrejo-Rodriguez M, Vigouroux A, Mursalimov A, Grin I, Alili D, Koshenov Z, Akishev Z, Maksimenko A, Bissenbaev AK, Matkarimov BT, Saparbaev M, Ishchenko AA, Morera S. Structural comparison of AP endonucleases from the exonuclease III family reveals new amino acid residues in human AP endonuclease 1 that are involved in incision  of damaged DNA. Biochimie. 2016 Jun 22. pii: S0300-9084(16)30120-1. doi:, 10.1016/j.biochi.2016.06.011. PMID:27343627 doi:http://dx.doi.org/10.1016/j.biochi.2016.06.011
 
 |