|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of GLMU from Mycobacterium tuberculosis snapshot 1== | | ==Crystal structure of GLMU from Mycobacterium tuberculosis snapshot 1== |
- | <StructureSection load='4g87' size='340' side='right' caption='[[4g87]], [[Resolution|resolution]] 2.03Å' scene=''> | + | <StructureSection load='4g87' size='340' side='right'caption='[[4g87]], [[Resolution|resolution]] 2.03Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4g87]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Myctu Myctu]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4G87 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4G87 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4g87]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Mycobacterium_tuberculosis_H37Rv Mycobacterium tuberculosis H37Rv]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4G87 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4G87 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=POP:PYROPHOSPHATE+2-'>POP</scene>, <scene name='pdbligand=UD1:URIDINE-DIPHOSPHATE-N-ACETYLGLUCOSAMINE'>UD1</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.03Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3t7w|3t7w]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=POP:PYROPHOSPHATE+2-'>POP</scene>, <scene name='pdbligand=UD1:URIDINE-DIPHOSPHATE-N-ACETYLGLUCOSAMINE'>UD1</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">glmU, MT1046, Rv1018c ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83332 MYCTU])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4g87 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4g87 OCA], [https://pdbe.org/4g87 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4g87 RCSB], [https://www.ebi.ac.uk/pdbsum/4g87 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4g87 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4g87 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4g87 OCA], [http://pdbe.org/4g87 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4g87 RCSB], [http://www.ebi.ac.uk/pdbsum/4g87 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4g87 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GLMU_MYCTU GLMU_MYCTU]] Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C-terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N-acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5-triphosphate), a reaction catalyzed by the N-terminal domain.<ref>PMID:19237750</ref> <ref>PMID:19121323</ref> | + | [https://www.uniprot.org/uniprot/GLMU_MYCTU GLMU_MYCTU] Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C-terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N-acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5-triphosphate), a reaction catalyzed by the N-terminal domain.<ref>PMID:19237750</ref> <ref>PMID:19121323</ref> |
- | <div style="background-color:#fffaf0;">
| + | |
- | == Publication Abstract from PubMed ==
| + | |
- | N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU), exclusive to prokaryotes, is a bifunctional enzyme that synthesizes UDP-GlcNAc-an important component of the cell wall of many microorganisms. Uridyltransfer, one of the reactions it catalyzes, involves binding GlcNAc-1-P, UTP and Mg(2+) ions; however, whether one or two ions catalyze this reaction remains ambiguous. Here, we resolve this using biochemical and crystallographic studies on GlmU from Mycobacterium tuberculosis (GlmU(Mtb)) and identify a two-metal-ion mechanism (mechanism-B). In contrast to well-established two-metal mechanism (mechanism-A) for enzymes acting on nucleic acids, mechanism-B is distinct in the way the two Mg(2+) ions (Mg(2+)A and Mg(2+)B) are positioned and stabilized. Further, attempts to delineate the roles of the metal ions in substrate stabilization, nucleophile activation and transition-state stabilization are presented. Interestingly, a detailed analysis of the available structures of sugar nucleotidyl transferases (SNTs) suggests that they too would utilize mechanism-B rather than mechanism-A. Based on this, SNTs could be classified into Group-I, which employs the two-metal mechanism-B as in GlmU, and Group-II that employs a variant one-metal mechanism-B, wherein the role of Mg(2+)A is substituted by a conserved lysine. Strikingly, eukaryotic SNTs appear confined to Group-II. Recognizing these differences may be important in the design of selective inhibitors against microbial nucleotidyl transferases.
| + | |
| | | |
- | Crystal structures identify an atypical two-metal-ion mechanism for uridyltransfer in GlmU: its significance to sugar nucleotidyl transferases.,Jagtap PK, Verma SK, Vithani N, Bais VS, Prakash B J Mol Biol. 2013 May 27;425(10):1745-59. doi: 10.1016/j.jmb.2013.02.019. Epub, 2013 Feb 26. PMID:23485416<ref>PMID:23485416</ref>
| + | ==See Also== |
- | | + | *[[N-acetylglucosamine-1-phosphate uridyltransferase|N-acetylglucosamine-1-phosphate uridyltransferase]] |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | |
- | </div>
| + | |
- | <div class="pdbe-citations 4g87" style="background-color:#fffaf0;"></div>
| + | |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Myctu]] | + | [[Category: Large Structures]] |
- | [[Category: Jagtap, P A]] | + | [[Category: Mycobacterium tuberculosis H37Rv]] |
- | [[Category: Prakash, B]] | + | [[Category: Jagtap PA]] |
- | [[Category: Verma, S K]] | + | [[Category: Prakash B]] |
- | [[Category: Acetyltransferase]] | + | [[Category: Verma SK]] |
- | [[Category: Acyltransferase]]
| + | |
- | [[Category: Bifunctional]]
| + | |
- | [[Category: Cell shape]]
| + | |
- | [[Category: Cell wall biogenesis/degradation]]
| + | |
- | [[Category: Left-handed-beta-helix]]
| + | |
- | [[Category: Metal-binding]]
| + | |
- | [[Category: Multifunctional enzyme]]
| + | |
- | [[Category: Nucleotidyltransferase]]
| + | |
- | [[Category: Peptidoglycan synthesis]]
| + | |
- | [[Category: Pyrophosphorylase]]
| + | |
- | [[Category: Rossmann-like fold]]
| + | |
- | [[Category: Transferase]]
| + | |