|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Structure of UHRF1 PHD finger in complex with histone H3K4me3 1-9 peptide== | | ==Structure of UHRF1 PHD finger in complex with histone H3K4me3 1-9 peptide== |
- | <StructureSection load='3sow' size='340' side='right' caption='[[3sow]], [[Resolution|resolution]] 1.95Å' scene=''> | + | <StructureSection load='3sow' size='340' side='right'caption='[[3sow]], [[Resolution|resolution]] 1.95Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3sow]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SOW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3SOW FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3sow]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3SOW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3SOW FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9501Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=M3L:N-TRIMETHYLLYSINE'>M3L</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=M3L:N-TRIMETHYLLYSINE'>M3L</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3sou|3sou]], [[3sox|3sox]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3sow FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3sow OCA], [https://pdbe.org/3sow PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3sow RCSB], [https://www.ebi.ac.uk/pdbsum/3sow PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3sow ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ICBP90, NP95, RNF106, UHRF1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3sow FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3sow OCA], [http://pdbe.org/3sow PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3sow RCSB], [http://www.ebi.ac.uk/pdbsum/3sow PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3sow ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[http://www.uniprot.org/uniprot/UHRF1_HUMAN UHRF1_HUMAN]] Note=Defects in UHRF1 may be a cause of cancers. Overexpressed in many different forms of human cancers, including bladder, breast, cervical, colorectal and prostate cancers, as well as pancreatic adenocarcinomas, rhabdomyosarcomas and gliomas. Plays an important role in the correlation of histone modification and gene silencing in cancer progression. Expression is associated with a poor prognosis in patients with various cancers, suggesting that it participates in cancer progression. | + | [https://www.uniprot.org/uniprot/UHRF1_HUMAN UHRF1_HUMAN] Note=Defects in UHRF1 may be a cause of cancers. Overexpressed in many different forms of human cancers, including bladder, breast, cervical, colorectal and prostate cancers, as well as pancreatic adenocarcinomas, rhabdomyosarcomas and gliomas. Plays an important role in the correlation of histone modification and gene silencing in cancer progression. Expression is associated with a poor prognosis in patients with various cancers, suggesting that it participates in cancer progression. |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/UHRF1_HUMAN UHRF1_HUMAN]] Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. May be involved in DNA repair.<ref>PMID:10646863</ref> <ref>PMID:15009091</ref> <ref>PMID:15361834</ref> <ref>PMID:17673620</ref> <ref>PMID:17967883</ref> <ref>PMID:19056828</ref> <ref>PMID:21745816</ref> <ref>PMID:22945642</ref> <ref>PMID:21777816</ref> | + | [https://www.uniprot.org/uniprot/UHRF1_HUMAN UHRF1_HUMAN] Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. May be involved in DNA repair.<ref>PMID:10646863</ref> <ref>PMID:15009091</ref> <ref>PMID:15361834</ref> <ref>PMID:17673620</ref> <ref>PMID:17967883</ref> <ref>PMID:19056828</ref> <ref>PMID:21745816</ref> <ref>PMID:22945642</ref> <ref>PMID:21777816</ref> |
- | <div style="background-color:#fffaf0;">
| + | |
- | == Publication Abstract from PubMed ==
| + | |
- | Histone methylation occurs on both lysine and arginine residues, and its dynamic regulation plays a critical role in chromatin biology. Here we identify the UHRF1 PHD finger (PHD(UHRF1)), an important regulator of DNA CpG methylation, as a histone H3 unmodified arginine 2 (H3R2) recognition modality. This conclusion is based on binding studies and cocrystal structures of PHD(UHRF1) bound to histone H3 peptides, where the guanidinium group of unmodified R2 forms an extensive intermolecular hydrogen bond network, with methylation of H3R2, but not H3K4 or H3K9, disrupting complex formation. We have identified direct target genes of UHRF1 from microarray and ChIP studies. Importantly, we show that UHRF1's ability to repress its direct target gene expression is dependent on PHD(UHRF1) binding to unmodified H3R2, thereby demonstrating the functional importance of this recognition event and supporting the potential for crosstalk between histone arginine methylation and UHRF1 function.
| + | |
- | | + | |
- | PHD Finger Recognition of Unmodified Histone H3R2 Links UHRF1 to Regulation of Euchromatic Gene Expression.,Rajakumara E, Wang Z, Ma H, Hu L, Chen H, Lin Y, Guo R, Wu F, Li H, Lan F, Shi YG, Xu Y, Patel DJ, Shi Y Mol Cell. 2011 Jul 22;43(2):275-84. PMID:21777816<ref>PMID:21777816</ref>
| + | |
- | | + | |
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
| + | |
- | </div>
| + | |
- | <div class="pdbe-citations 3sow" style="background-color:#fffaf0;"></div>
| + | |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Ubiquitin protein ligase|Ubiquitin protein ligase]] | + | *[[Ubiquitin protein ligase 3D structures|Ubiquitin protein ligase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
- | [[Category: Patel, D J]] | + | [[Category: Large Structures]] |
- | [[Category: Rajakumara, E]] | + | [[Category: Patel DJ]] |
- | [[Category: Histone binding]] | + | [[Category: Rajakumara E]] |
- | [[Category: Histone h3]]
| + | |
- | [[Category: Ligase]]
| + | |
- | [[Category: Zn coordinated phd finger]]
| + | |
| Structural highlights
Disease
UHRF1_HUMAN Note=Defects in UHRF1 may be a cause of cancers. Overexpressed in many different forms of human cancers, including bladder, breast, cervical, colorectal and prostate cancers, as well as pancreatic adenocarcinomas, rhabdomyosarcomas and gliomas. Plays an important role in the correlation of histone modification and gene silencing in cancer progression. Expression is associated with a poor prognosis in patients with various cancers, suggesting that it participates in cancer progression.
Function
UHRF1_HUMAN Multidomain protein that acts as a key epigenetic regulator by bridging DNA methylation and chromatin modification. Specifically recognizes and binds hemimethylated DNA at replication forks via its YDG domain and recruits DNMT1 methyltransferase to ensure faithful propagation of the DNA methylation patterns through DNA replication. In addition to its role in maintenance of DNA methylation, also plays a key role in chromatin modification: through its tudor-like regions and PHD-type zinc fingers, specifically recognizes and binds histone H3 trimethylated at 'Lys-9' (H3K9me3) and unmethylated at 'Arg-2' (H3R2me0), respectively, and recruits chromatin proteins. Enriched in pericentric heterochromatin where it recruits different chromatin modifiers required for this chromatin replication. Also localizes to euchromatic regions where it negatively regulates transcription possibly by impacting DNA methylation and histone modifications. Has E3 ubiquitin-protein ligase activity by mediating the ubiquitination of target proteins such as histone H3 and PML. It is still unclear how E3 ubiquitin-protein ligase activity is related to its role in chromatin in vivo. May be involved in DNA repair.[1] [2] [3] [4] [5] [6] [7] [8] [9]
See Also
References
- ↑ Hopfner R, Mousli M, Jeltsch JM, Voulgaris A, Lutz Y, Marin C, Bellocq JP, Oudet P, Bronner C. ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase IIalpha expression. Cancer Res. 2000 Jan 1;60(1):121-8. PMID:10646863
- ↑ Arima Y, Hirota T, Bronner C, Mousli M, Fujiwara T, Niwa S, Ishikawa H, Saya H. Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA-damage checkpoint signals contributes to cell cycle arrest at G1/S transition. Genes Cells. 2004 Feb;9(2):131-42. PMID:15009091
- ↑ Unoki M, Nishidate T, Nakamura Y. ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene. 2004 Oct 7;23(46):7601-10. PMID:15361834 doi:10.1038/sj.onc.1208053
- ↑ Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007 Sep 21;317(5845):1760-4. Epub 2007 Aug 2. PMID:17673620 doi:10.1126/science.1147939
- ↑ Karagianni P, Amazit L, Qin J, Wong J. ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation. Mol Cell Biol. 2008 Jan;28(2):705-17. Epub 2007 Oct 29. PMID:17967883 doi:10.1128/MCB.01598-07
- ↑ Kim JK, Esteve PO, Jacobsen SE, Pradhan S. UHRF1 binds G9a and participates in p21 transcriptional regulation in mammalian cells. Nucleic Acids Res. 2009 Feb;37(2):493-505. doi: 10.1093/nar/gkn961. Epub 2008 Dec, 4. PMID:19056828 doi:10.1093/nar/gkn961
- ↑ Felle M, Joppien S, Nemeth A, Diermeier S, Thalhammer V, Dobner T, Kremmer E, Kappler R, Langst G. The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1. Nucleic Acids Res. 2011 Oct;39(19):8355-65. doi: 10.1093/nar/gkr528. Epub 2011, Jul 10. PMID:21745816 doi:10.1093/nar/gkr528
- ↑ Guan D, Factor D, Liu Y, Wang Z, Kao HY. The epigenetic regulator UHRF1 promotes ubiquitination-mediated degradation of the tumor-suppressor protein promyelocytic leukemia protein. Oncogene. 2012 Sep 3. doi: 10.1038/onc.2012.406. PMID:22945642 doi:10.1038/onc.2012.406
- ↑ Rajakumara E, Wang Z, Ma H, Hu L, Chen H, Lin Y, Guo R, Wu F, Li H, Lan F, Shi YG, Xu Y, Patel DJ, Shi Y. PHD Finger Recognition of Unmodified Histone H3R2 Links UHRF1 to Regulation of Euchromatic Gene Expression. Mol Cell. 2011 Jul 22;43(2):275-84. PMID:21777816 doi:10.1016/j.molcel.2011.07.006
|