3ou0

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (10:17, 6 November 2024) (edit) (undo)
 
(2 intermediate revisions not shown.)
Line 1: Line 1:
==re-refined 3CS0==
==re-refined 3CS0==
-
<StructureSection load='3ou0' size='340' side='right' caption='[[3ou0]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
+
<StructureSection load='3ou0' size='340' side='right'caption='[[3ou0]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[3ou0]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/ ] and [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3OU0 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3OU0 FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[3ou0]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3OU0 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3OU0 FirstGlance]. <br>
-
</td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene>, <scene name='pdbligand=UNK:UNKNOWN'>UNK</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 3&#8491;</td></tr>
-
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3cs0|3cs0]], [[3otp|3otp]]</td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">b0161, degP, htrA, JW0157, ptd ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ou0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ou0 OCA], [https://pdbe.org/3ou0 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ou0 RCSB], [https://www.ebi.ac.uk/pdbsum/3ou0 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ou0 ProSAT]</span></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ou0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ou0 OCA], [http://pdbe.org/3ou0 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3ou0 RCSB], [http://www.ebi.ac.uk/pdbsum/3ou0 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3ou0 ProSAT]</span></td></tr>
+
</table>
</table>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/DEGP_ECOLI DEGP_ECOLI]] DegP acts as a chaperone at low temperatures but switches to a peptidase (heat shock protein) at higher temperatures. It degrades transiently denatured and unfolded proteins which accumulate in the periplasm following heat shock or other stress conditions. DegP is efficient with Val-Xaa and Ile-Xaa peptide bonds, suggesting a preference for beta-branched side chain amino acids. Only unfolded proteins devoid of disulfide bonds appear capable of being cleaved, thereby preventing non-specific proteolysis of folded proteins. Its proteolytic activity is essential for the survival of cells at elevated temperatures. It can degrade IciA, ada, casein, globin and PapA. DegP shares specificity with DegQ. DegP is also involved in the biogenesis of partially folded outer-membrane proteins (OMP).<ref>PMID:2180903</ref> <ref>PMID:8830688</ref> <ref>PMID:10319814</ref> <ref>PMID:18505836</ref> <ref>PMID:12730160</ref> <ref>PMID:18496527</ref>
+
[https://www.uniprot.org/uniprot/DEGP_ECOLI DEGP_ECOLI] DegP acts as a chaperone at low temperatures but switches to a peptidase (heat shock protein) at higher temperatures. It degrades transiently denatured and unfolded proteins which accumulate in the periplasm following heat shock or other stress conditions. DegP is efficient with Val-Xaa and Ile-Xaa peptide bonds, suggesting a preference for beta-branched side chain amino acids. Only unfolded proteins devoid of disulfide bonds appear capable of being cleaved, thereby preventing non-specific proteolysis of folded proteins. Its proteolytic activity is essential for the survival of cells at elevated temperatures. It can degrade IciA, ada, casein, globin and PapA. DegP shares specificity with DegQ. DegP is also involved in the biogenesis of partially folded outer-membrane proteins (OMP).<ref>PMID:2180903</ref> <ref>PMID:8830688</ref> <ref>PMID:10319814</ref> <ref>PMID:18505836</ref> <ref>PMID:12730160</ref> <ref>PMID:18496527</ref>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
-
All organisms have to monitor the folding state of cellular proteins precisely. The heat-shock protein DegP is a protein quality control factor in the bacterial envelope that is involved in eliminating misfolded proteins and in the biogenesis of outer-membrane proteins. Here we describe the molecular mechanisms underlying the regulated protease and chaperone function of DegP from Escherichia coli. We show that binding of misfolded proteins transforms hexameric DegP into large, catalytically active 12-meric and 24-meric multimers. A structural analysis of these particles revealed that DegP represents a protein packaging device whose central compartment is adaptable to the size and concentration of substrate. Moreover, the inner cavity serves antagonistic functions. Whereas the encapsulation of folded protomers of outer-membrane proteins is protective and might allow safe transit through the periplasm, misfolded proteins are eliminated in the molecular reaction chamber. Oligomer reassembly and concomitant activation on substrate binding may also be critical in regulating other HtrA proteases implicated in protein-folding diseases.
+
Protein quality control requires careful regulation of intracellular proteolysis. For DegP, a periplasmic protease, substrates promote assembly of inactive hexamers into proteolytically active cages with 12, 18, 24, or 30 subunits. Here, we show that sensitive activation and cage assembly require covalent linkage of distinct substrate sequences that affect degradation (degrons). One degron binds the DegP active site, and another degron binds a separate tethering site in PDZ1 in the crystal structure of a substrate-bound DegP dodecamer. FRET experiments demonstrate that active cages assemble rapidly in a reaction that is positively cooperative in substrate concentration, remain stably assembled while uncleaved substrate is present, and dissociate once degradation is complete. Thus, the energy of binding of linked substrate degrons drives assembly of the proteolytic machine responsible for subsequent degradation. Substrate cleavage and depletion results in disassembly, ensuring that DegP is proteolytically active only when sufficient quantities of protein substrates are present.
-
Structural basis for the regulated protease and chaperone function of DegP.,Krojer T, Sawa J, Schafer E, Saibil HR, Ehrmann M, Clausen T Nature. 2008 Jun 12;453(7197):885-90. Epub 2008 May 21. PMID:18496527<ref>PMID:18496527</ref>
+
Covalent Linkage of Distinct Substrate Degrons Controls Assembly and Disassembly of DegP Proteolytic Cages.,Kim S, Grant RA, Sauer RT Cell. 2011 Apr 1;145(1):67-78. PMID:21458668<ref>PMID:21458668</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
<div class="pdbe-citations 3ou0" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 3ou0" style="background-color:#fffaf0;"></div>
 +
 +
==See Also==
 +
*[[Heat Shock Protein structures|Heat Shock Protein structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Bacillus coli migula 1895]]
+
[[Category: Escherichia coli]]
-
[[Category: Grant, R A]]
+
[[Category: Large Structures]]
-
[[Category: Kim, S]]
+
[[Category: Grant RA]]
-
[[Category: Sauer, R T]]
+
[[Category: Kim S]]
-
[[Category: Hydrolase]]
+
[[Category: Sauer RT]]
-
[[Category: Protease]]
+

Current revision

re-refined 3CS0

PDB ID 3ou0

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools