|
|
(One intermediate revision not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of a Trp-less green fluorescent protein translated by the universal genetic code== | | ==Crystal structure of a Trp-less green fluorescent protein translated by the universal genetic code== |
- | <StructureSection load='3ufz' size='340' side='right' caption='[[3ufz]], [[Resolution|resolution]] 1.85Å' scene=''> | + | <StructureSection load='3ufz' size='340' side='right'caption='[[3ufz]], [[Resolution|resolution]] 1.85Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3ufz]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Aeqvi Aeqvi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3UFZ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3UFZ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3ufz]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3UFZ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3UFZ FirstGlance]. <br> |
- | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.85Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3ug0|3ug0]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GFP ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=6100 AEQVI])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ufz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ufz OCA], [https://pdbe.org/3ufz PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ufz RCSB], [https://www.ebi.ac.uk/pdbsum/3ufz PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ufz ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ufz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ufz OCA], [http://pdbe.org/3ufz PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3ufz RCSB], [http://www.ebi.ac.uk/pdbsum/3ufz PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3ufz ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI]] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. | + | [https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 21: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Green Fluorescent Protein|Green Fluorescent Protein]] | + | *[[Green Fluorescent Protein 3D structures|Green Fluorescent Protein 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Aeqvi]] | + | [[Category: Aequorea victoria]] |
- | [[Category: Araiso, Y]] | + | [[Category: Large Structures]] |
- | [[Category: Kawahara-Kobayashi, A]] | + | [[Category: Araiso Y]] |
- | [[Category: Kiga, D]] | + | [[Category: Kawahara-Kobayashi A]] |
- | [[Category: Kigawa, T]] | + | [[Category: Kiga D]] |
- | [[Category: Matsuda, T]] | + | [[Category: Kigawa T]] |
- | [[Category: Nureki, O]] | + | [[Category: Matsuda T]] |
- | [[Category: Yokoyama, S]] | + | [[Category: Nureki O]] |
- | [[Category: Fluorescent protein]]
| + | [[Category: Yokoyama S]] |
- | [[Category: Green fluorescent protein]]
| + | |
| Structural highlights
Function
GFP_AEQVI Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.
Publication Abstract from PubMed
At earlier stages in the evolution of the universal genetic code, fewer than 20 amino acids were considered to be used. Although this notion is supported by a wide range of data, the actual existence and function of the genetic codes with a limited set of canonical amino acids have not been addressed experimentally, in contrast to the successful development of the expanded codes. Here, we constructed artificial genetic codes involving a reduced alphabet. In one of the codes, a tRNA(Ala) variant with the Trp anticodon reassigns alanine to an unassigned UGG codon in the Escherichia coli S30 cell-free translation system lacking tryptophan. We confirmed that the efficiency and accuracy of protein synthesis by this Trp-lacking code were comparable to those by the universal genetic code, by an amino acid composition analysis, green fluorescent protein fluorescence measurements and the crystal structure determination. We also showed that another code, in which UGU/UGC codons are assigned to Ser, synthesizes an active enzyme. This method will provide not only new insights into primordial genetic codes, but also an essential protein engineering tool for the assessment of the early stages of protein evolution and for the improvement of pharmaceuticals.
Simplification of the genetic code: restricted diversity of genetically encoded amino acids.,Kawahara-Kobayashi A, Masuda A, Araiso Y, Sakai Y, Kohda A, Uchiyama M, Asami S, Matsuda T, Ishitani R, Dohmae N, Yokoyama S, Kigawa T, Nureki O, Kiga D Nucleic Acids Res. 2012 Aug 21. PMID:22909996[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Kawahara-Kobayashi A, Masuda A, Araiso Y, Sakai Y, Kohda A, Uchiyama M, Asami S, Matsuda T, Ishitani R, Dohmae N, Yokoyama S, Kigawa T, Nureki O, Kiga D. Simplification of the genetic code: restricted diversity of genetically encoded amino acids. Nucleic Acids Res. 2012 Aug 21. PMID:22909996 doi:10.1093/nar/gks786
|