|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Structural changes during cysteine desulfurase CsdA and sulfur-acceptor CsdE interactions provide insight into the trans-persulfuration== | | ==Structural changes during cysteine desulfurase CsdA and sulfur-acceptor CsdE interactions provide insight into the trans-persulfuration== |
- | <StructureSection load='4lw4' size='340' side='right' caption='[[4lw4]], [[Resolution|resolution]] 2.01Å' scene=''> | + | <StructureSection load='4lw4' size='340' side='right'caption='[[4lw4]], [[Resolution|resolution]] 2.01Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4lw4]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Ecoki Ecoki] and [http://en.wikipedia.org/wiki/Ecoli Ecoli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4LW4 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4LW4 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4lw4]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_IHE3034 Escherichia coli IHE3034] and [https://en.wikipedia.org/wiki/Escherichia_coli_K-12 Escherichia coli K-12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4LW4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4LW4 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.01Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4lw2|4lw2]]</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">b2810, csdA, JW2781, ygdJ ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI]), csdE, ECOK1_3187 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=714962 ECOKI])</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4lw4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4lw4 OCA], [https://pdbe.org/4lw4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4lw4 RCSB], [https://www.ebi.ac.uk/pdbsum/4lw4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4lw4 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4lw4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4lw4 OCA], [http://pdbe.org/4lw4 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4lw4 RCSB], [http://www.ebi.ac.uk/pdbsum/4lw4 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4lw4 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/CSDA_ECOLI CSDA_ECOLI]] Catalyzes the removal of elemental sulfur and selenium atoms from L-cysteine, L-cystine, L-selenocysteine, and L-selenocystine to produce L-alanine. L-cysteine sulfinic acid is the best substrate. Functions as a selenium delivery protein in the pathway for the biosynthesis of selenophosphate.<ref>PMID:10829016</ref> | + | [https://www.uniprot.org/uniprot/CSDA_ECOLI CSDA_ECOLI] Catalyzes the removal of elemental sulfur and selenium atoms from L-cysteine, L-cystine, L-selenocysteine, and L-selenocystine to produce L-alanine. L-cysteine sulfinic acid is the best substrate. Functions as a selenium delivery protein in the pathway for the biosynthesis of selenophosphate.<ref>PMID:10829016</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 20: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 4lw4" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 4lw4" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Cysteine desulfurase 3D structures|Cysteine desulfurase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Ecoki]] | + | [[Category: Escherichia coli IHE3034]] |
- | [[Category: Ecoli]] | + | [[Category: Escherichia coli K-12]] |
- | [[Category: Kim, S]] | + | [[Category: Large Structures]] |
- | [[Category: Park, S Y]] | + | [[Category: Kim S]] |
- | [[Category: Csda]] | + | [[Category: Park SY]] |
- | [[Category: Cysteine desulfurase]]
| + | |
- | [[Category: Lyase]]
| + | |
- | [[Category: Sufe]]
| + | |
| Structural highlights
Function
CSDA_ECOLI Catalyzes the removal of elemental sulfur and selenium atoms from L-cysteine, L-cystine, L-selenocysteine, and L-selenocystine to produce L-alanine. L-cysteine sulfinic acid is the best substrate. Functions as a selenium delivery protein in the pathway for the biosynthesis of selenophosphate.[1]
Publication Abstract from PubMed
In Escherichia coli, three cysteine desulfurases (IscS, SufS and CsdA) initiate the delivery of sulfur for various biological processes such as the biogenesis of Fe-S clusters. The sulfur generated as persulfide on a cysteine residue of cysteine desulfurases are further transferred to Fe-S scaffolds (e.g. IscU), or to intermediate cysteine-containing sulfur-acceptors (e.g. TusA, SufE, and CsdE) prior to its utilization. Herein, we report structures of CsdA, and CsdA-CsdE complex, which provide insight into the sulfur transfer mediated by the trans-persulfuration reaction. Analysis of the structures indicates that the conformational flexibility of the active cysteine loop in CsdE is essential for accepting the persulfide from the cysteine of CsdA. Additionally, CsdA and CsdE invoke a different binding mode than those of previously reported cysteine desulfurase (IscS) and sulfur-acceptors (TusA and IscU). Moreover, the conservation of interaction-mediating residues between CsdA/SufS and CsdE/SufE further suggests that the SufS-SufE interface likely resembles that of CsdA and CsdE.
Structural changes during cysteine desulfurase CsdA and sulfur-acceptor CsdE interactions provide insight into the trans-persulfuration.,Kim S, Park S J Biol Chem. 2013 Aug 2. PMID:23913692[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Lacourciere GM, Mihara H, Kurihara T, Esaki N, Stadtman TC. Escherichia coli NifS-like proteins provide selenium in the pathway for the biosynthesis of selenophosphate. J Biol Chem. 2000 Aug 4;275(31):23769-73. PMID:10829016 doi:10.1074/jbc.M000926200
- ↑ Kim S, Park S. Structural changes during cysteine desulfurase CsdA and sulfur-acceptor CsdE interactions provide insight into the trans-persulfuration. J Biol Chem. 2013 Aug 2. PMID:23913692 doi:10.1074/jbc.M113.480277
|