|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==A complex structure of BtGH84== | | ==A complex structure of BtGH84== |
- | <StructureSection load='4ais' size='340' side='right' caption='[[4ais]], [[Resolution|resolution]] 2.00Å' scene=''> | + | <StructureSection load='4ais' size='340' side='right'caption='[[4ais]], [[Resolution|resolution]] 2.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4ais]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Bactn Bactn]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AIS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4AIS FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4ais]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacteroides_thetaiotaomicron_VPI-5482 Bacteroides thetaiotaomicron VPI-5482]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4AIS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4AIS FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOA:GLYCOLIC+ACID'>GOA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2chn|2chn]], [[2cho|2cho]], [[2j47|2j47]], [[2j4g|2j4g]], [[2jiw|2jiw]], [[2vvn|2vvn]], [[2vvs|2vvs]], [[2w4x|2w4x]], [[2w66|2w66]], [[2w67|2w67]], [[2wca|2wca]], [[2wzh|2wzh]], [[2wzi|2wzi]], [[2x0h|2x0h]], [[2xj7|2xj7]], [[2xm1|2xm1]], [[2xm2|2xm2]], [[4aiu|4aiu]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOA:GLYCOLIC+ACID'>GOA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4ais FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ais OCA], [http://pdbe.org/4ais PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4ais RCSB], [http://www.ebi.ac.uk/pdbsum/4ais PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4ais ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4ais FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4ais OCA], [https://pdbe.org/4ais PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4ais RCSB], [https://www.ebi.ac.uk/pdbsum/4ais PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4ais ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/OGA_BACTN OGA_BACTN]] Biological function unknown. Capable of hydrolyzing the glycosidic link of O-GlcNAcylated proteins. | + | [https://www.uniprot.org/uniprot/OGA_BACTN OGA_BACTN] Biological function unknown. Capable of hydrolyzing the glycosidic link of O-GlcNAcylated proteins. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 22: |
| ==See Also== | | ==See Also== |
| *[[Beta-Hexosaminidase|Beta-Hexosaminidase]] | | *[[Beta-Hexosaminidase|Beta-Hexosaminidase]] |
| + | *[[Beta-Hexosaminidase 3D structures|Beta-Hexosaminidase 3D structures]] |
| + | *[[O-GlcNAcase|O-GlcNAcase]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bactn]] | + | [[Category: Bacteroides thetaiotaomicron VPI-5482]] |
- | [[Category: Davies, G J]] | + | [[Category: Large Structures]] |
- | [[Category: He, Y]] | + | [[Category: Davies GJ]] |
- | [[Category: Hydrolase]] | + | [[Category: He Y]] |
- | [[Category: Inhibitor]]
| + | |
| Structural highlights
Function
OGA_BACTN Biological function unknown. Capable of hydrolyzing the glycosidic link of O-GlcNAcylated proteins.
Publication Abstract from PubMed
The O-GlcNAc modification involves the attachment of single beta-O-linked N-acetylglucosamine residues to serine and threonine residues of nucleocytoplasmic proteins. Interestingly, previous biochemical and structural studies have shown that O-GlcNAcase (OGA), the enzyme that removes O-GlcNAc from proteins, has an active site pocket that tolerates various N-acyl groups in addition to the N-acetyl group of GlcNAc. The remarkable sequence and structural conservation of residues comprising this pocket suggest functional importance. We hypothesized this pocket enables processing of metabolic variants of O-GlcNAc that could be formed due to inaccuracy within the metabolic machinery of the hexosamine biosynthetic pathway. In the accompanying paper (Bergfeld, A. K., Pearce, O. M., Diaz, S. L., Pham, T., and Varki, A. (2012) J. Biol. Chem. 287, 28865-28881), N-glycolylglucosamine (GlcNGc) was shown to be a catabolite of NeuNGc. Here, we show that the hexosamine salvage pathway can convert GlcNGc to UDP-GlcNGc, which is then used to modify proteins with O-GlcNGc. The kinetics of incorporation and removal of O-GlcNGc in cells occur in a dynamic manner on a time frame similar to that of O-GlcNAc. Enzymatic activity of O-GlcNAcase (OGA) toward a GlcNGc glycoside reveals OGA can process glycolyl-containing substrates fairly efficiently. A bacterial homolog (BtGH84) of OGA, from a human gut symbiont, also processes O-GlcNGc substrates, and the structure of this enzyme bound to a GlcNGc-derived species reveals the molecular basis for tolerance and binding of GlcNGc. Together, these results demonstrate that analogs of GlcNAc, such as GlcNGc, are metabolically viable species and that the conserved active site pocket of OGA likely evolved to enable processing of mis-incorporated analogs of O-GlcNAc and thereby prevent their accumulation. Such plasticity in carbohydrate processing enzymes may be a general feature arising from inaccuracy in hexosamine metabolic pathways.
Metabolism of Vertebrate Amino Sugars with N-Glycolyl Groups: INTRACELLULAR beta-O-LINKED N-GLYCOLYLGLUCOSAMINE (GlcNGc), UDP-GlcNGc, AND THE BIOCHEMICAL AND STRUCTURAL RATIONALE FOR THE SUBSTRATE TOLERANCE OF beta-O-LINKED beta-N-ACETYLGLUCOSAMINIDASE.,Macauley MS, Chan J, Zandberg WF, He Y, Whitworth GE, Stubbs KA, Yuzwa SA, Bennet AJ, Varki A, Davies GJ, Vocadlo DJ J Biol Chem. 2012 Aug 17;287(34):28882-97. Epub 2012 Jun 12. PMID:22692202[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Macauley MS, Chan J, Zandberg WF, He Y, Whitworth GE, Stubbs KA, Yuzwa SA, Bennet AJ, Varki A, Davies GJ, Vocadlo DJ. Metabolism of Vertebrate Amino Sugars with N-Glycolyl Groups: INTRACELLULAR beta-O-LINKED N-GLYCOLYLGLUCOSAMINE (GlcNGc), UDP-GlcNGc, AND THE BIOCHEMICAL AND STRUCTURAL RATIONALE FOR THE SUBSTRATE TOLERANCE OF beta-O-LINKED beta-N-ACETYLGLUCOSAMINIDASE. J Biol Chem. 2012 Aug 17;287(34):28882-97. Epub 2012 Jun 12. PMID:22692202 doi:10.1074/jbc.M112.363721
|