|
|
(2 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==High Resolution DHFR R-67== | | ==High Resolution DHFR R-67== |
- | <StructureSection load='2rh2' size='340' side='right' caption='[[2rh2]], [[Resolution|resolution]] 0.96Å' scene=''> | + | <StructureSection load='2rh2' size='340' side='right'caption='[[2rh2]], [[Resolution|resolution]] 0.96Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2rh2]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2RH2 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2RH2 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2rh2]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2RH2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2RH2 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MRD:(4R)-2-METHYLPENTANE-2,4-DIOL'>MRD</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 0.96Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2gqv|2gqv]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MRD:(4R)-2-METHYLPENTANE-2,4-DIOL'>MRD</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Dihydrofolate_reductase Dihydrofolate reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.5.1.3 1.5.1.3] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2rh2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2rh2 OCA], [https://pdbe.org/2rh2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2rh2 RCSB], [https://www.ebi.ac.uk/pdbsum/2rh2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2rh2 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2rh2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2rh2 OCA], [http://pdbe.org/2rh2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2rh2 RCSB], [http://www.ebi.ac.uk/pdbsum/2rh2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2rh2 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/DYR21_ECOLX DYR21_ECOLX]] Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. | + | [https://www.uniprot.org/uniprot/DYR21_ECOLX DYR21_ECOLX] Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 21: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Dihydrofolate reductase|Dihydrofolate reductase]] | + | *[[Dihydrofolate reductase 3D structures|Dihydrofolate reductase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Dihydrofolate reductase]] | |
| [[Category: Escherichia coli]] | | [[Category: Escherichia coli]] |
- | [[Category: Krahn, J M]] | + | [[Category: Large Structures]] |
- | [[Category: London, R E]] | + | [[Category: Krahn JM]] |
- | [[Category: Antibiotic resistance]] | + | [[Category: London RE]] |
- | [[Category: Folate metabolism]]
| + | |
- | [[Category: Methotrexate resistance]]
| + | |
- | [[Category: Nadp]]
| + | |
- | [[Category: One-carbon metabolism]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
- | [[Category: Plasmid-encoded r67 dhfr]]
| + | |
- | [[Category: Tmp-resistant dhfr]]
| + | |
- | [[Category: Trimethoprim resistance]]
| + | |
| Structural highlights
Function
DYR21_ECOLX Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis.
Publication Abstract from PubMed
Type II dihydrofolate reductase (DHFR) is a plasmid-encoded enzyme that confers resistance to bacterial DHFR-targeted antifolate drugs. It forms a symmetric homotetramer with a central pore which functions as the active site. Its unusual structure, which results in a promiscuous binding surface that accommodates either the dihydrofolate (DHF) substrate or the NADPH cofactor, has constituted a significant limitation to efforts to understand its substrate specificity and reaction mechanism. We describe here the first structure of a ternary R67 DHFR.DHF.NADP+ catalytic complex, resolved to 1.26 A. This structure provides the first clear picture of how this enzyme, which lacks the active site carboxyl residue that is ubiquitous in Type I DHFRs, is able to function. In the catalytic complex, the polar backbone atoms of two symmetry-related I68 residues provide recognition motifs that interact with the carboxamide on the nicotinamide ring, and the N3-O4 amide function on the pteridine ring. This set of interactions orients the aromatic rings of substrate and cofactor in a relative endo geometry in which the reactive centers are held in close proximity. Additionally, a central, hydrogen-bonded network consisting of two pairs of Y69-Q67-Q67'-Y69' residues provides an unusually tight interface, which appears to serve as a "molecular clamp" holding the substrates in place in an orientation conducive to hydride transfer. In addition to providing the first clear insight regarding how this extremely unusual enzyme is able to function, the structure of the ternary complex provides general insights into how a mutationally challenged enzyme, i.e., an enzyme whose evolution is restricted to four-residues-at-a-time active site mutations, overcomes this fundamental limitation.
Crystal structure of a type II dihydrofolate reductase catalytic ternary complex.,Krahn JM, Jackson MR, DeRose EF, Howell EE, London RE Biochemistry. 2007 Dec 25;46(51):14878-88. Epub 2007 Dec 4. PMID:18052202[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Krahn JM, Jackson MR, DeRose EF, Howell EE, London RE. Crystal structure of a type II dihydrofolate reductase catalytic ternary complex. Biochemistry. 2007 Dec 25;46(51):14878-88. Epub 2007 Dec 4. PMID:18052202 doi:10.1021/bi701532r
|