|
|
(3 intermediate revisions not shown.) |
Line 1: |
Line 1: |
| | | |
| ==Covalent glycosyl-enzyme intermediate of Hypocrea jecorina Cel7a E217Q mutant trapped using DNP-2-deoxy-2-fluoro-cellotrioside== | | ==Covalent glycosyl-enzyme intermediate of Hypocrea jecorina Cel7a E217Q mutant trapped using DNP-2-deoxy-2-fluoro-cellotrioside== |
- | <StructureSection load='4c4d' size='340' side='right' caption='[[4c4d]], [[Resolution|resolution]] 1.32Å' scene=''> | + | <StructureSection load='4c4d' size='340' side='right'caption='[[4c4d]], [[Resolution|resolution]] 1.32Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4c4d]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_13631 Atcc 13631]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4C4D OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4C4D FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4c4d]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Trichoderma_reesei Trichoderma reesei]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4C4D OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4C4D FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=G2F:2-DEOXY-2-FLUORO-ALPHA-D-GLUCOPYRANOSE'>G2F</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.32Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BGC:BETA-D-GLUCOSE'>BGC</scene>, <scene name='pdbligand=CO:COBALT+(II)+ION'>CO</scene>, <scene name='pdbligand=G2F:2-DEOXY-2-FLUORO-ALPHA-D-GLUCOPYRANOSE'>G2F</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=PRD_900005:beta-cellobiose'>PRD_900005</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4c4c|4c4c]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4c4d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4c4d OCA], [https://pdbe.org/4c4d PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4c4d RCSB], [https://www.ebi.ac.uk/pdbsum/4c4d PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4c4d ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cellulose_1,4-beta-cellobiosidase_(non-reducing_end) Cellulose 1,4-beta-cellobiosidase (non-reducing end)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.91 3.2.1.91] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4c4d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4c4d OCA], [http://pdbe.org/4c4d PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4c4d RCSB], [http://www.ebi.ac.uk/pdbsum/4c4d PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4c4d ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GUX1_HYPJE GUX1_HYPJE]] The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose. | + | [https://www.uniprot.org/uniprot/GUX1_HYPJE GUX1_HYPJE] The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 4c4d" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 4c4d" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Cellobiohydrolase 3D structures|Cellobiohydrolase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 13631]] | + | [[Category: Large Structures]] |
- | [[Category: Haddad-Momeni, M]] | + | [[Category: Trichoderma reesei]] |
- | [[Category: Mackenzie, L]] | + | [[Category: Haddad-Momeni M]] |
- | [[Category: Sandgren, M]] | + | [[Category: Mackenzie L]] |
- | [[Category: Stahlberg, J]] | + | [[Category: Sandgren M]] |
- | [[Category: Withers, S G]] | + | [[Category: Stahlberg J]] |
- | [[Category: Cellobiohydrolase]]
| + | [[Category: Withers SG]] |
- | [[Category: Cellulase]]
| + | |
- | [[Category: Glycoside hydrolase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
| Structural highlights
4c4d is a 1 chain structure with sequence from Trichoderma reesei. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 1.32Å |
Ligands: | , , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
GUX1_HYPJE The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose.
Publication Abstract from PubMed
Glycoside hydrolases (GHs) cleave glycosidic linkages in carbohydrates, typically via inverting or retaining mechanisms, the latter of which proceeds via a two-step mechanism that includes formation of a glycosyl-enzyme intermediate. We present two new structures of the catalytic domain of Hypocrea jecorina GH Family 7 cellobiohydrolase Cel7A, namely a Michaelis complex with a full cellononaose ligand and a glycosyl-enzyme intermediate, that reveal details of the 'static' reaction coordinate. We also employ transition path sampling to determine the 'dynamic' reaction coordinate for the catalytic cycle. The glycosylation reaction coordinate contains components of forming and breaking bonds and a conformational change in the nucleophile. Deglycosylation proceeds via a product-assisted mechanism wherein the glycosylation product, cellobiose, positions a water molecule for nucleophilic attack on the anomeric carbon of the glycosyl-enzyme intermediate. In concert with previous structures, the present results reveal the complete hydrolytic reaction coordinate for this naturally and industrially important enzyme family.
The Mechanism of Cellulose Hydrolysis by a Two-Step, Retaining Cellobiohydrolase Elucidated by Structural and Transition Path Sampling Studies.,Knott BC, Haddad Momeni M, Crowley MF, Mackenzie LF, Gotz AW, Sandgren M, Withers SG, Stahlberg J, Beckham GT J Am Chem Soc. 2013 Dec 16. PMID:24341799[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Knott BC, Haddad Momeni M, Crowley MF, Mackenzie LF, Gotz AW, Sandgren M, Withers SG, Stahlberg J, Beckham GT. The Mechanism of Cellulose Hydrolysis by a Two-Step, Retaining Cellobiohydrolase Elucidated by Structural and Transition Path Sampling Studies. J Am Chem Soc. 2013 Dec 16. PMID:24341799 doi:http://dx.doi.org/10.1021/ja410291u
|